Skip to main content
Log in

On the optoelectronic properties of non-covalently functionalized graphene for solar cell application

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this study, we report a simple approach toward the non-covalent functionalization of graphene by anthracene and thiophene molecules in different configurations, depending on the direction of the molecules approach to the surface of graphene. We examined structural, optoelectronic and vibrational properties of graphene before and after interaction with anthracene and thiophene. The density functional theory at B3LYP with 6-311G(d,p), 6-31G(d,p) and 6-31G(d) was employed to choose appropriate basis set that provides a more accurate molecular–properties description. This is important to compare and understand the deep relationship between the chemical structure of these heterostructures and their related properties to be chosen as an active layer in electronic devices. The device-based thiophene–graphene with perpendicular configuration film as an active layer in CdTe/CdS solar cell shows the best performance with a power conversion efficiency of \(9.58\%\), an open-circuit voltage of \(0.7\,\hbox {V}\), a short-circuit current density of \(24.47\,\hbox {mA}\,\hbox {cm}^{2}\) and a fill factor of \(55.92\%\) under simulated AM1.5 conditions at \(1000\,\hbox {W}\,\hbox {m}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  2. Isoniemi, T., Tuukkanen, S., Cameron, D.C., Simonen, J., Toppari, J.J.: Measuring optical anisotropy in poly (3, 4-ethylene dioxythiophene): poly (styrene sulfonate) films with added graphene. Org. Electron. 25, 317–323 (2015)

    Article  Google Scholar 

  3. Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., Ruoff, R.S.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009)

    Article  Google Scholar 

  4. Worsley, M.A., Pauzauskie, P.J., Olson, T.Y., Biener, J., Satcher Jr., J.H., Baumann, T.F.: Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010)

    Article  Google Scholar 

  5. Mabrook, M., Zeze, D.: Graphene electronics. IET Circuits Devices Syst. 9(1), 2–3 (2015)

    Article  Google Scholar 

  6. Zeze, D., Mabrook, M.: Graphene electronics, volume 2. IET Circuits Devices Syst. 9(6), 385 (2015)

    Article  Google Scholar 

  7. Debnath, P.C., Park, J., Scott, A.M., Lee, J., Lee, J.H., Song, Y.W.: In situ synthesis of graphene with telecommunication lasers for nonlinear optical devices. Adv. Opt. Mater. 3(9), 1264–1272 (2015)

    Article  Google Scholar 

  8. Piper, J.R., Fan, S.: Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1(4), 347–353 (2014)

    Article  Google Scholar 

  9. Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S.: Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)

    Article  Google Scholar 

  10. Huang, L., Zhang, Z., Li, Z., Chen, B., Ma, X., Dong, L., Peng, L.-M.: Multifunctional graphene sensors for magnetic and hydrogen detection. ACS Appl. Mater. Interfaces 7(18), 9581–9588 (2015)

    Article  Google Scholar 

  11. Abbasi, E., Akbarzadeh, A., Kouhi, M., Milani, M.: Graphene: synthesis, bio-applications, and properties. Artif Cells Nanomed Biotechnol 44(1), 150–156 (2016)

    Article  Google Scholar 

  12. Zhou, G., Pei, S., Li, L., Wang, D.W., Wang, S., Huang, K., Yin, L.C., Li, F., Cheng, H.M.: A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 26(4), 625–631 (2014)

    Article  Google Scholar 

  13. Deng, B., Hsu, P.-C., Chen, G., Chandrashekar, B., Liao, L., Ayitimuda, Z., Wu, J., Guo, Y., Lin, L., Zhou, Y.: Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 15(6), 4206–4213 (2015)

    Article  Google Scholar 

  14. Biccari, F., Gabelloni, F., Burzi, E., Gurioli, M., Pescetelli, S., Agresti, A., Di Carlo, A., Bonaccorso, F., Kymakis, E., Vinattieri, A.: Sensing the role of graphene-based electron transport layer in perovskite solar cells by photoluminescence spectroscopy (2017). Preprint arXiv:1702.04159

  15. Lee, D.-Y., Na, S.-I., Kim, S.-S.: Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8(3), 1513–1522 (2016)

    Article  Google Scholar 

  16. Zhang, Y., Tsu, R., Naili, Y.: Growth of semiconductors on hetero-substrates using graphene as an interfacial layer. Google Patents (2017)

  17. Jiao, K., Wang, X., Wang, Y., Chen, Y.: Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J. Mater. Chem. C. 2(37), 7715–7721 (2014)

    Article  Google Scholar 

  18. Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology 22(40), 405603 (2011)

    Article  Google Scholar 

  19. Rad, A.S., Sani, E., Binaeian, E., Peyravi, M., Jahanshahi, M.: DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene. Appl. Surf. Sci. 401, 156–161 (2017)

    Article  Google Scholar 

  20. Rochefort, A., Wuest, J.D.: Interaction of substituted aromatic compounds with graphene. Langmuir 25(1), 210–215 (2008)

    Article  Google Scholar 

  21. Xu, X., Yin, J., Li, H., Zhou, Y., Li, J., Pei, J., Wu, K.: Self-assembly of benzodithiophene derivatives on graphite: effects of substitution alkoxy chain number and location. J. Phys. Chem. C 113(20), 8844–8852 (2009)

    Article  Google Scholar 

  22. Yang, G., Lee, C., Kim, J., Ren, F., Pearton, S.J.: Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 15(6), 1798–1801 (2013)

    Article  Google Scholar 

  23. Zhu, Y., Cai, Y., Xu, L., Zheng, L., Wang, L., Qi, B., Xu, C.: Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl. Mater. Interfaces 7(14), 7492–7496 (2015)

    Article  Google Scholar 

  24. Wang, B., Huang, M., Tao, L., Lee, S.H., Jang, A.-R., Li, B.-W., Shin, H.S., Akinwande, D., Ruoff, S.: Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 10(1), 1404–1410 (2016)

    Article  Google Scholar 

  25. Kwon, K.C., Kim, S., Kim, C., Lee, J.-L., Kim, Y.: Fluoropolymer-assisted graphene electrode for organic light-emitting diodes. Org. Electron. 15(11), 3154–3161 (2014)

    Article  Google Scholar 

  26. Cui, P., Seo, S., Lee, J., Wang, L., Lee, E., Min, M., Lee, H.: Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide. ACS Nano 5(9), 6826–6833 (2011)

    Article  Google Scholar 

  27. Liu, J., Xue, Y., Gao, Y., Yu, D., Durstock, M., Dai, L.: Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv. Mater. 24(17), 2228–2233 (2012)

    Article  Google Scholar 

  28. Wang, D.H., Kim, J.K., Seo, J.H., Park, I., Hong, B.H., Park, J.H., Heeger, A.J.: Transferable graphene oxide by stamping nanotechnology: electron-transport layer for efficient bulk-heterojunction solar cells. Angew. Chem. Int. Ed. 52(10), 2874–2880 (2013)

    Article  Google Scholar 

  29. Bonaccorso, F., Balis, N., Stylianakis, M.M., Savarese, M., Adamo, C., Gemmi, M., Pellegrini, V., Stratakis, E., Kymakis, E.: Functionalized graphene as an electron-cascade acceptor for air-processed organic ternary solar cells. Adv. Funct. Mater. 25(25), 3870–3880 (2015)

    Article  Google Scholar 

  30. Miao, X., Pan, K., Wang, G., Liao, Y., Wang, L., Zhou, W., Jiang, B., Pan, Q., Tian, G.: Well-dispersed CoS nanoparticles on a functionalized graphene nanosheet surface: a counter electrode of dye-sensitized solar cells. Chem. A Eur. J. 20(2), 474–482 (2014)

    Article  Google Scholar 

  31. Bai, Z., Wang, D.: Oxidation of CdTe thin film in air coated with and without a CdCl2 layer. Phys. Status Solidi (a) 209(10), 1982–1987 (2012)

    Article  Google Scholar 

  32. Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 49(17), 3014–3017 (2010)

    Article  Google Scholar 

  33. Huang, F., Wan, D., Bi, H., Lin, T.: Applications of graphene in solar cells. Graphene: Energy storage and conversion aplications. J. Nanosci. Nanotechnol. 14(7), 4719–4732 (2014)

    Article  Google Scholar 

  34. Liu, Z., Lau, S.P., Yan, F.: Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev. 44(15), 5638–5679 (2015)

    Article  Google Scholar 

  35. Shi, Z., Jayatissa, A.H.: The impact of graphene on the fabrication of thin film solar cells: current status and future prospects. Materials 11(1), 36 (2017)

    Article  Google Scholar 

  36. Fischer, C.F.: Hartree-Fock Method for Atoms. A Numerical Approach. Physics Bulletin, New York (1977)

    Google Scholar 

  37. Gross, E.K., Dreizler, R.M.: Density Functional Theory. Springer, New York (2013)

    Google Scholar 

  38. Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.: Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  39. Lozynski, M., Rusinska-Roszak, D., Mack, H.-G.: Hydrogen bonding and density functional calculations: the B3LYP approach as the shortest way to MP2 results. J. Phys. Chem. A 102(17), 2899–2903 (1998)

    Article  Google Scholar 

  40. Phillips, H., Zheng, Z., Geva, E., Dunietz, B.D.: Orbital gap predictions for rational design of organic photovoltaic materials. Org. Electron. 15(7), 1509–1520 (2014)

    Article  Google Scholar 

  41. Vivas-Reyes, R., Núñez-Zarur, F., Martı, E.: Electronic structure and reactivity analysis for a set of Zn-chelates with substituted 8-hydroxyquinoline ligands and their application in OLED. Org. Electron. 9(5), 625–634 (2008)

    Article  Google Scholar 

  42. O’boyle, N.M., Tenderholt, A.L., Langner, K.M.: Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29(5), 839–845 (2008)

    Article  Google Scholar 

  43. Biegler-Konig, F., Schonbohm, J.: AIM2000 Program Package, Ver. 2.0. University of Applied Sciences, Bielefeld (2002)

    Google Scholar 

  44. Liu, Y., Sun, Y., Rockett, A.: A new simulation software of solar cells—wxAMPS. Sol. Energy Mater. Sol. Cells 98, 124–128 (2012)

    Article  Google Scholar 

  45. Zhu, H., Kalkan, A.K., Hou, J., Fonash, S.J.: Applications of AMPS-1D for solar cell simulation. AIP (1999)

  46. Wang, J., Ren, X., Shi, S., Leung, C., Chan, P.K.: Charge accumulation induced S-shape J–V curves in bilayer heterojunction organic solar cells. Org. Electron. 12(6), 880–885 (2011)

    Article  Google Scholar 

  47. Mirkamali, A., Muminov, K.: The effect of change the thickness on CdS/CdTe tandem multi-junction solar cells efficiency. J. Optoelectron. Nanostruct. 2(2), 13–24 (2017)

    Google Scholar 

  48. Cruickshank, D., Sparks, R.: Experimental and theoretical determinations of bond lengths in naphthalene, anthracene and other hydrocarbons. The Royal Society (1960)

  49. Li, X.-C., Sirringhaus, H., Garnier, F., Holmes, A.B., Moratti, S.C., Feeder, N., Clegg, W., Teat, S.J., Friend, R.H.: A highly \(\pi \)-stacked organic semiconductor for thin film transistors based on fused thiophenes. J. Am. Chem. Soc. 120(9), 2206–2207 (1998)

    Article  Google Scholar 

  50. Denis, P.A., Iribarne, F.: Thiophene adsorption on single wall carbon nanotubes and graphene. J. Mol. Struct. THEOCHEM 957(1), 114–119 (2010)

    Article  Google Scholar 

  51. Rodríguez-Ropero, F., Casanovas, J., Alemán, C.: Ab initio calculations on \(\pi \)-stacked thiophene dimer, trimer, and tetramer: structure, interaction energy, cooperative effects, and intermolecular electronic parameters. J. Comput. Chem. 29(1), 69–78 (2008)

    Article  Google Scholar 

  52. Tsuzuki, S., Honda, K., Azumi, R.: Model chemistry calculations of thiophene dimer interactions: origin of \(\pi \)-stacking. J. Am. Chem. Soc. 124(41), 12200–12209 (2002)

    Article  Google Scholar 

  53. Bader, R.: AIM 2000 program. McMaster University, Hamilton (2000)

    Google Scholar 

  54. Allen, R.N., Shukla, M., Leszczynski, J.: Ab initio insight on the interaction of ascorbate with Li\(^+\), Na\(^+\), K\(^+\), Be\(^2+\), Mg\(^2+\), and Ca\(^2+\) metal cations. Int. J. Quantum Chem. 106(11), 2366–2372 (2006)

    Article  Google Scholar 

  55. Venkataramanan, N.S., Ambigapathy, S.: Encapsulation of sulfur, oxygen, and nitrogen mustards by cucurbiturils: a DFT study. J. Incl. Phenom. Macrocycl. Chem. 83(3–4), 387–400 (2015)

    Article  Google Scholar 

  56. Espinosa, E., Molins, E., Lecomte, C.: Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 285(3), 170–173 (1998)

    Article  Google Scholar 

  57. Yao, X., Kou, X., Qiu, J.: Acidified multi-wall carbon nanotubes/polyaniline composites with high negative permittivity. Org. Electron. 38, 55–60 (2016)

    Article  Google Scholar 

  58. Okulik, N., Jubert, A.H.: Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electron. J. Mol. Des. 4(1), 17–30 (2005)

    Google Scholar 

  59. Duan, Y.-A., Li, H.-B., Geng, Y., Wu, Y., Wang, G.-Y., Su, Z.-M.: Theoretical studies on the hole transport property of tetrathienoarene derivatives: the influence of the position of sulfur atom, substituent and \(\pi \)-conjugated core. Org. Electron. 15(2), 602–613 (2014)

    Article  Google Scholar 

  60. Streitwieser, A.: Molecular Orbital Theory for Organic Chemists. Pioneers of Quantum Chemistry, pp. 275–300. ACS Publications (2013)

  61. Jones, R.N.: The ultraviolet absorption spectra of anthracene derivatives. Chem. Rev. 41(2), 353–371 (1947)

    Article  MathSciNet  Google Scholar 

  62. Wan, J., Hada, M., Ehara, M., Nakatsuji, H.: Electronic excitation spectrum of thiophene studied by symmetry-adapted cluster configuration interaction method. J. Chem. Phys. 114(2), 842–850 (2001)

    Article  Google Scholar 

  63. Kravets, V., Grigorenko, A., Nair, R., Blake, P., Anissimova, S., Novoselov, K., Geim, A.: Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81(15), 155413 (2010)

    Article  Google Scholar 

  64. Palenzuela, Js, Viñuales, A., Odriozola, I., Cabañero, Gn, Grande, H.J., Ruiz, V.: Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes. ACS Appl. Mater. Interfaces 6(16), 14562–14567 (2014)

    Article  Google Scholar 

  65. You, P., Liu, Z., Tai, Q., Liu, S., Yan, F.: Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27(24), 3632–3638 (2015)

    Article  Google Scholar 

  66. Kim, S.-Y., Lee, J.-H., Shim, H.-S., Kim, J.-J.: Optical analysis of organic photovoltaic cells incorporating graphene as a transparent electrode. Org. Electron. 14(6), 1496–1503 (2013)

    Article  Google Scholar 

  67. Chang, D.W., Choi, H.-J., Filer, A., Baek, J.-B.: Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs). J. Mater. Chem. A 2(31), 12136–12149 (2014)

    Article  Google Scholar 

  68. Lee, J.H., Yoon, S., Ko, M.S., Lee, N., Hwang, I., Lee, M.J.: Improved performance of organic photovoltaic devices by doping F4TCNQ onto solution-processed graphene as a hole transport layer. Org. Electron. 30, 302–311 (2016)

    Article  Google Scholar 

  69. Huang, X., Guo, H., Yang, J., Wang, K., Niu, X., Liu, X.: Moderately reduced graphene oxide/PEDOT: PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells. Org. Electron. 39, 288–295 (2016)

  70. Bi, H., Huang, F., Liang, J., Tang, Y., Lü, X., Xie, X., Jiang, M.: Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. J. Mater. Chem. 21(43), 17366–17370 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Khalfaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouk, R., Bergaoui, M. & Khalfaoui, M. On the optoelectronic properties of non-covalently functionalized graphene for solar cell application. J Comput Electron 17, 791–809 (2018). https://doi.org/10.1007/s10825-018-1149-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1149-1

Keywords

Navigation