Skip to main content
Log in

Effects of particle size on the electrical properties of NdFeO3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, NdFeO3 nanoparticles were synthesized by the co-precipitation method. The particle size of NdFeO3 nanoparticles was controlled by changing the NaOH concentration in the co-precipitation method, mainly because NaOH concentration could control grain growth. The samples were characterized by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). They were found that with the change of NaOH concentration, the lattice parameters and cell volume of NdFeO3 nanoparticles changed little, but the average particle size ranged from ~ 100 to ~ 142 nm. And the influence of particle size on electrical properties of samples was also explored. The results showed that the dielectric constant of the sample increased with the decrease of the average particle size, and the dielectric loss decreases. When the average particle size was ~ 100 nm and the frequency was 103 Hz, the dielectric constant (ε′) was at most (~ 1.4 × 104) at room temperature, indicating that it had potential applications in dielectric capacitors. In addition, the conduction mechanism of NdFeO3 nanoparticle was studied by frequency dependence of AC conductivity. The effect of the grain and grain boundaries of NdFeO3 nanoparticles on the electrical properties of material was observed in complex impedance spectroscopy. The grain boundary resistance played a leading role in the resistance of the material, and the values of resistance increased with the decrease of the particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Gabal, F. Al-Solami, Y.M. Al Angari, J. Mater. Sci.: Mater. Electron. 31, 3146–3158 (2020)

    CAS  Google Scholar 

  2. Y. Wang, J. Zhu, L. Zhang, Mater. Lett. 60, 1767–1770 (2006)

    CAS  Google Scholar 

  3. I. Ahmad, M.J. Akhtar, M. Younas, J. Appl. Phys. 112, 074105 (2012)

    Google Scholar 

  4. P. Verma, P.K. Roy, J. Mater. Sci.: Mater. Electron. 31, 13028–13039 (2020)

    CAS  Google Scholar 

  5. Y. Du, Z.X. Cheng, X. Wang, J. Appl. Phys. 108, 093914 (2010)

    Google Scholar 

  6. K. Nagashio, K. Kuribayashi, J. Am. Ceram. Soc. 85, 2550–2556 (2002)

    CAS  Google Scholar 

  7. H.T. Giang, H.T. Duy, P.Q. Ngan, Sens. Actuators B Chem. 158, 246–251 (2011)

    CAS  Google Scholar 

  8. E.H. Sujiono, J. Agus, S. Samnur, IOP Conf. Ser. Mater. Sci. Eng. 367, 12056 (2018)

    Google Scholar 

  9. M. Coşkun, O. Polat, F.M. Coşkun, J. Mater. Sci.: Mater. Electron. 30, 13336–13346 (2019)

    Google Scholar 

  10. S.J. Yuan, W. Ren, F. Hong, Phys. Rev. B: Condens. Matter 87, 184405 (2013)

    Google Scholar 

  11. M.K. Warshi, V. Mishra, A. Sagdeo, Ceram. Int. 44, 8344–8349 (2018)

    CAS  Google Scholar 

  12. A. Somvanshi, S. Husain, W. Khan, J. Alloys Compd. 778, 439–451 (2019)

    CAS  Google Scholar 

  13. T.A. Nguyen, V. Pham, T.L. Pham, Crystals 10, 219 (2020)

    CAS  Google Scholar 

  14. Z. Zhou, L. Guo, H. Yang, J. Alloys Compd. 583, 21–31 (2014)

    CAS  Google Scholar 

  15. A. Somvanshi, S. Manzoor, S. Husain, in 2nd International Conference on condensed matter and applied physics, 2017

  16. A. Wu, G. Cheng, H. Shen, Asia-Pacific Jrnl of. Chem. Eng. 4, 518–521 (2009)

    CAS  Google Scholar 

  17. B. Abida, M. Ikram, K. Ravi, J. Phys. Condens. Matter 21, 325501 (2009)

    Google Scholar 

  18. R.D. Kumar, R. Jayavel, J. Mater. Sci.: Mater. Electron. 25, 3953–3961 (2014)

    Google Scholar 

  19. S.A. Mir, M. Ikram, K. Asokan, Optik 125, 6903–6908 (2014)

    CAS  Google Scholar 

  20. S. Singh, A. Singh, B.C. Yadav, Sens. Actuators B Chem. 177, 730–739 (2013)

    CAS  Google Scholar 

  21. K.S. Kumar, R.N. Bhowmik, Mater. Chem. Phys. 146, 159–169 (2014)

    Google Scholar 

  22. X. Huang, J. Zhang, W. Wang, J. Magn. Magn. Mater. 405, 36–41 (2016)

    CAS  Google Scholar 

  23. A.S.S. Manzoor, S. Husain, AIP Conf. Proc. 2115, 4495661 (2019)

    Google Scholar 

  24. G. Aravind, M. Raghasudha, D. Ravinder, J. Materiomics 1, 348–356 (2015)

    Google Scholar 

  25. N. Rezlescu, E. Rezlescu, Solid State Commun. 14, 69–72 (1974)

    CAS  Google Scholar 

  26. S. Sahoo, P. Mahapatra, R. Choudhary, J. Phys. D Appl. Phys. 49, 035302 (2016)

    Google Scholar 

  27. J. Shanker, M. Buchi Suresh, D. Suresh Babu, Mater. Today: Proc. 3, 2091–2100 (2016)

    Google Scholar 

  28. J. Shanker, M. Buchi Suresh, G. Narsinga Rao, J. Mater. Sci. 54, 5595–5604 (2009)

    Google Scholar 

  29. J. Shanker, M. Buchi Suresh, D. Suresh Babu, IIJSER 8, 2347–3878 (2014)

    Google Scholar 

  30. M. Nakhaei, D. Sanavi Khoshnoud, Phys. B Condens. Matter 553, 53–58 (2019)

    CAS  Google Scholar 

  31. A. Ahlawat, S. Kushwaha, A.A. Khan, J. Mater. Sci.: Mater. Electron. 29, 927–934 (2018)

    CAS  Google Scholar 

  32. V.R. Mudinepalli, S. Song, J. Li, Ceram. Int. 40, 1781–1788 (2014)

    CAS  Google Scholar 

  33. S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, J. Appl. Phys. 98, 104305 (2005)

    Google Scholar 

  34. S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, J. Appl. Phys. 94, 6091–6096 (2003)

    CAS  Google Scholar 

  35. N. Singh, A. Agarwal, S. Sanghi, Curr. Appl. Phys. 11, 783–789 (2011)

    Google Scholar 

  36. S. Thirumalairajan, K. Girija, V.R. Mastelaro, J. Mater. Sci.: Mater. Electron. 26, 8652–8662 (2015)

    CAS  Google Scholar 

  37. K. Sultan, M. Ikram, K. Asokan, Vacuum 99, 251–258 (2014)

    CAS  Google Scholar 

  38. S. Yuvaraj, S.L.S. Manisha, Mater. Res. Bull. 72, 77–82 (2015)

    CAS  Google Scholar 

  39. S. Manzoor, S. Husain, Mater. Res. Express. 5, 055009 (2018)

    Google Scholar 

  40. J. Shanker, B.V. Prasad, M.B. Suresh, Mater. Res. Bull. 94, 385–398 (2017)

    CAS  Google Scholar 

  41. R. Ranjan, N. Kumar, B. Behera, Adv. Mater. Lett. 5, 138–142 (2014)

    CAS  Google Scholar 

  42. D. Triyono, H. Laysandra, H.L. Liu, J. Mater. Sci.: Mater. Electron. 30, 2512–2522 (2019)

    CAS  Google Scholar 

  43. S. Chanda, S. Saha, A. Dutta, Mater. Res. Bull. 48, 1688–1693 (2013)

    CAS  Google Scholar 

  44. B. Garbarz-Glos, W. Bak, M. Antonova, IOP Conf. Ser. Mater. Sci. Eng. 49, 12031 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchang Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Su, Y., Liu, Y. et al. Effects of particle size on the electrical properties of NdFeO3 nanoparticles. J Mater Sci: Mater Electron 31, 21913–21922 (2020). https://doi.org/10.1007/s10854-020-04695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04695-8

Navigation