Skip to main content
Log in

Sintering behavior and microwave dielectric properties of Sr2CeO4 ceramics doped with Li2CO3-Bi2O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave dielectric ceramics Sr2CeO4 + n wt% Li2CO3—Bi2O3 (LB) (1 ≤ n ≤ 4, L: B = x: y, weight ratio) were prepared by a traditional solid-state reaction method. The effects of LB additives on the phase formation, microstructure, sintering behavior, and microwave dielectric properties of Sr2CeO4 ceramics were investigated. The sintering temperature can be reduced obviously from 1270 to 950 °C because of the liquid phase formation of LB. Single-phase Sr2CeO4 ceramics with dense structure and homogenous grains were obtained by adding 1wt% LB. With LB content increasing, Q × f values would decrease because secondary-phase SrCeO3 appeared in the ceramics. When the content of LB was fixed at 1 wt%, the sintering temperature and Q × f value would decrease simultaneously with the ratio of Li2CO3 increasing. Desirable performances of Sr2CeO4 + 1wt% LB ceramics: (εr = 14.36, Q × f = 102,023 GHz and τf =  − 66.42 ppm/°C, L:B = 2:8) and (εr = 13.56, Q × f = 70,109 GHz, τf =  − 64.17 ppm/°C, L:B = 8:2) can be achieved at 1075 °C and 950 °C, respectively, suggesting that Sr2CeO4–LB ceramics have a great potential for millimeter-wave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Ao, Y. Tang, J. Li, W. Fang, L. Duan, C. Su, Y. Sun, L. Liu, L. Fang, Structure characterization and microwave dielectric properties of LiGa5O8 ceramic with low-εr and low loss. J. Eur. Ceram. Soc. 40, 5498–5503 (2020)

    Article  CAS  Google Scholar 

  2. K. Cheng, C. Li, C. Yin, Y. Tang, Y. Sun, L. Fang, Effects of Sr2+ substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of Ba3-xSrx(VO4)2 solid solutions. J. Eur. Ceram. Soc. 39, 3738–3743 (2019)

    Article  CAS  Google Scholar 

  3. Z. Tan, K. Song, H.B. Bafrooei, B. Liu, J. Wu, J. Xu, H. Lin, D. Wang, The effects of TiO2 addition on microwave dielectric properties of Y3MgAl3SiO12 ceramic for 5G application. Ceram. Int. 46, 15665–15669 (2020)

    Article  CAS  Google Scholar 

  4. X. Zhang, Z. Jiang, B. Tang, Z. Fang, Z. Xiong, H. Li, C. Yuan, S. Zhang, A new series of low-loss multicomponent oxide microwave dielectrics with a rock salt structure: Li5MgABO8 (A=Ti, Sn; B=Nb, Ta). Ceram. Int. 46, 10332–10340 (2020)

    Article  CAS  Google Scholar 

  5. K. Du, X.Q. Song, J. Li, W.Z. Lu, X.C. Wang, X.H. Wang, W. Lei, Phase compositions and microwave dielectric properties of Sn-deficient Ca2SnO4 ceramics. J. Alloys Compd. 802, 488–492 (2019)

    Article  CAS  Google Scholar 

  6. Z. Fu, P. Liu, J. Ma, X. Zhao, H. Zhang, Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). J. Eur. Ceram. Soc. 36, 625–629 (2016)

    Article  CAS  Google Scholar 

  7. Y. Lai, X. Tang, X. Huang, H. Zhang, X. Liang, J. Li, H. Su, Phase composition, crystal structure and microwave dielectric properties of Mg2-xCuxSiO4 ceramics. J. Eur. Ceram. Soc. 38, 1508–1516 (2018)

    Article  CAS  Google Scholar 

  8. K.X. Song, X.M. Chen, Phase evolution and microwave dielectric characteristics of Ti-substituted Mg2SiO4 forsterite ceramics. Mater. Lett. 62, 520–522 (2008)

    Article  CAS  Google Scholar 

  9. J. Sugihara, K. Kakimoto, I. Kagomiya, H. Ohsato, Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process. J. Eur. Ceram. Soc. 27, 3105–3108 (2007)

    Article  CAS  Google Scholar 

  10. K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 91, 69–86 (1989)

    Article  CAS  Google Scholar 

  11. Z. Xu, L. Li, S. Yu, M. Du, W. Luo, Magnesium fluoride doped MgTiO3 ceramics with ultra-high Q value at microwave frequencies. J. Alloys Compd. 802, 1–5 (2019)

    Article  CAS  Google Scholar 

  12. Q. Dai, R. Zuo, A novel ultralow-loss Sr2CeO4 microwave dielectric ceramic and its property modification. J. Eur. Ceram. Soc. 39, 1132–1136 (2019)

    Article  CAS  Google Scholar 

  13. J.J. Chen, J. He, D.H. Jiang, G.H. Chen, S.C. Cui, Temperature stable borophosphate glass-ceramics with low permittivity for LTCC application. Mater. Res. Express 6, 116330 (2019)

    Article  Google Scholar 

  14. J. Xi, G. Chen, F. Liu, F. Shang, J. Xu, C. Zhou, C. Yuan, Synthesis, microstructure and characterization of ultra-low permittivity CuO–ZnO–B2O3–Li2O glass/Al2O3 composites for ULTCC application. Ceram. Int. 45, 24431–24436 (2019)

    Article  CAS  Google Scholar 

  15. Y.Z. Hao, H. Yang, G.H. Chen, Q.L. Zhang, Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications. J. Alloys Compd. 552, 173–179 (2013)

    Article  CAS  Google Scholar 

  16. Y. Li, J. Li, B. Tang, S. Zhang, H. Li, Z. Qin, H. Chen, H. Yang, H. Tu, Low temperature sintering and dielectric properties of Li2ZnTi3O8–TiO2 composite ceramics doped with CaO–B2O3–SiO2 glass. J. Mater. Sci. Mater. Electron. 25, 2780–2785 (2014)

    Article  CAS  Google Scholar 

  17. X. Lu, Y. Zheng, Z. Dong, Q. Huang, Low temperature sintering and microwave dielectric properties of 0.6Li2ZnTi3O8–0.4Li2TiO3 ceramics doped with ZnO–B2O3–SiO2 glass. Mater. Lett. 131, 1–4 (2014)

    Article  CAS  Google Scholar 

  18. P. Zhang, X. Zhao, Y. Zhao, Effects of MBS addition on the low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics. J. Mater. Sci. Mater. Electron. 27, 6395–6398 (2016)

    Article  CAS  Google Scholar 

  19. Z. Zhang, H. Su, X. Tang, H. Zhang, T. Zhou, Y. Jing, Effects of BaCu(B2O5) on sintering characteristics and microwave dielectric properties of CaWO4 ceramics. Ceram. Int. 40, 10531–10535 (2014)

    Article  CAS  Google Scholar 

  20. H. Zuo, X. Tang, H. Guo, Q. Wang, C. Dai, H. Zhang, H. Su, Effects of BaCu(B2O5) addition on microwave dielectric properties of Li2TiO3 ceramics for LTCC applications. Ceram. Int. 43, 13913–13917 (2017)

    Article  CAS  Google Scholar 

  21. D. Zhou, H. Wang, L.X. Pang, X. Yao, Low-firing of BiSbO4 microwave dielectric ceramic with V2O5–CuO addition. Mater. Chem. Phys. 119, 149–152 (2010)

    Article  CAS  Google Scholar 

  22. H.P. Sun, Q.L. Zhang, H. Yang, Silver cofirable (Ca0.9, Mg0.1)SiO3 microwave dielectric ceramics with Li2CO3–Bi2O3 additive. Ceram. Int. 35, 637–641 (2009)

    Article  CAS  Google Scholar 

  23. W. Liu, R. Zuo, A novel Li2TiO3–Li2CeO3 ceramic composite with excellent microwave dielectric properties for low-temperature cofired ceramic applications. J. Eur. Ceram. Soc. 38, 119–123 (2018)

    Article  Google Scholar 

  24. E. Viesca-Villanueva, J. Oliva, D. Chavez, C.M. Lopez-Badillo, C. Gomez-Solis, A.I. Mtz-Enriquez, C.R. Garcia, Effect of Yb3+ codopant on the upconversion and thermoluminescent emission of Sr2CeO4:Er3+, Yb3+ phosphors. J. Phys. Chem. Solids 145, 109547 (2020)

    Article  CAS  Google Scholar 

  25. P. Zhang, M. Hao, X. Mao, K. Sun, M. Xiao, A novel low sintering temperature scheelite-structured CaBiVMoO8 microwave dielectric ceramics. J. Alloys Compd. 840, 155187 (2020)

    Article  CAS  Google Scholar 

  26. K. Chung, J. Yoo, C. Lee, D. Lee, Y. Jeong, H. Lee, Microstructural, dielectric and piezoelectric properties of low-temperature sintering Pb(Co1/2W1/2)O3–Pb(Mn1/2Nb2/3)O3–Pb(Zr, Ti)O3 ceramics with the addition of Li2CO3 and Bi2O3. Sens. Actuators, A 125, 340–345 (2006)

    Article  CAS  Google Scholar 

  27. F. Huang, H. Su, Y. Jing, Y. Li, Q. Lu, X. Tang, Microwave dielectric properties of glass-free CaMg0.9-xLi0.2ZnxSi2O6 ceramics for LTCC applications. Ceram. Int. 46, 18308–18314 (2020)

    Article  CAS  Google Scholar 

  28. J. Song, G. Zhu, H. Xu, W. Fu, J. Xu, J. Zhang, S. Huang, A. Yu, Preparation and properties of high-density Bi2O3 ceramics by cold sintering. Ceram. Int. 46, 13848–13853 (2020)

    Article  CAS  Google Scholar 

  29. H.B. Bafrooei, M. Feizpour, A. Sayyadi-Shahraki, K.X. Song, High-performance ZnTiNb2O8 microwave dielectric ceramics produced from ZnNb2O6–TiO2 nano powders. J. Alloys Compd. 834, 155082 (2020)

    Article  CAS  Google Scholar 

  30. H. Zuo, X. Tang, H. Zhang, Y. Lai, Y. Jing, H. Su, Low-dielectric-constant LiAlO2 ceramics combined with LBSCA glass for LTCC applications. Ceram. Int. 43, 8951–8955 (2017)

    Article  CAS  Google Scholar 

  31. W.H. Kan, V. Thangadurai, Thermochemistry of Sr2Ce1-xPrxO4 (x = 0, 0.2, 0.5, 0.8, and 1): variable-temperature and -atmosphere in-situ and ex-situ powder X-ray diffraction studies and their physical properties. Inorg. Chem. 51, 8973–8981 (2012)

    Article  CAS  Google Scholar 

  32. E.S. Kim, D.H. Kang, Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+)xTi1−xO2 (B5+=Nb, Ta) ceramics. Ceram. Int. 34, 883–888 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Key R&D Program of Zhejiang Province (Grant No. 2020C01004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Wang, H., Guo, J. et al. Sintering behavior and microwave dielectric properties of Sr2CeO4 ceramics doped with Li2CO3-Bi2O3. J Mater Sci: Mater Electron 31, 21693–21701 (2020). https://doi.org/10.1007/s10854-020-04682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04682-z

Navigation