Skip to main content
Log in

Improve the low-temperature electrochemical performance of Li4Ti5O12 anode materials by ion doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We adopt the strategy of doping ions of Mg2+, Cr3+, and F into Li4Ti5O12 (LTO) to substitute Li, Ti, and O, respectively (called the corresponding sample Mg-LTO, Cr-LTO, and F-LTO, respectively), and investigated its influences on the low-temperature electrochemical performance of LTO. After doping, the electrical conductivity of Mg-LTO, Cr-LTO, and F-LTO increased from less than < 10− 13 S cm− 1 to 3.07 × 10− 7 S cm− 1, 5.57 × 10− 7 S cm− 1, and 7.04 × 10− 7 S cm− 1, respectively. Structural refinement shows that doping has little effect on the radius of the crystal diffusion sites. Further research shows that the main reason for the improvement of low-temperature electrochemical performance is that doping affects the electrical conductivity, micromorphology, and phase composition of LTO. At −20 °C/10 C (1C corresponding to 175 mAh g− 1), the discharge capacities of Mg-LTO, Cr-LTO and, F-LTO are 113 mAh g− 1, 123 mAh g− 1, and 128 mAh g− 1, respectively. As a contrast, there is no discharge capacity for Pure LTO at the same conditions. After 600 cycles at −20 °C/5C, the discharge capacities of the sample of Pure LTO, Mg-LTO, Cr-LTO, and F-LTO are 69.7 mAh g− 1, 107.5 mAh g− 1, 142.3 mAh g− 1, and 133.2 mAh g− 1, respectively. Mg-LTO, Cr-LTO, and F-LTO exhibit excellent low-temperature rate performance and cycling stability. The related electrochemical factors and materials structure mechanisms involved were discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.N. Jansen, A.J. Kahaian, K.D. Kepler, P.A. Nelson, K. Amine, D.W. Dees, D.R. Vissers, M.M. Thackeray, Development of a high-power lithium-ion battery. J. Power Sources 81, 902–905 (1999)

    Article  Google Scholar 

  2. T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li[Li1/3Ti5/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995)

    Article  CAS  Google Scholar 

  3. S. Li, J. Mao, Enhanced the electrochemical performance of Li4Ti5O12 anode materials by high conductive graphene nanosheets. J. Mater. Sci. Mater. Electron. 28, 15135–15141 (2017)

    Article  CAS  Google Scholar 

  4. L.X. Zou, H. Feng, X, Chromium-Modified Li4Ti5O12 with a Synergistic Effect of Bulk Doping, Surface Coating, and Size Reducing. ACS Appl. Mater. Interfaces 8, 21407–21416 (2016)

    Article  CAS  Google Scholar 

  5. H.Y. Zhang, P. Jia, W, Improved rate capability and cycling stability of novel terbium-doped lithium titanate for lithium-ion batteries. Electrochim. Acta 210, 935–941 (2016)

    Article  CAS  Google Scholar 

  6. X.-P. Li, J. Mao, Sol-hydrothermal synthesis of Li4Ti5O12/rutile-TiO2 composite as high rate anode material for lithium ion batteries. Ceram. Int. 40, 13553–13558 (2014)

    Article  CAS  Google Scholar 

  7. A.G. Kashkooli, G. Lui, S. Farhad, D.U. Lee, K. Feng, A. Yu, Z. Chen, Nano-particle size effect on the performance of Li4Ti5O12 spinel. Electrochim. Acta 196, 33–40 (2016)

    Article  CAS  Google Scholar 

  8. Q. Huang, Z. Yang, J. Mao, Research progress on the low-temperature electrochemical performance of Li4Ti5O12 anode material. Ionics 23, 803–811 (2017)

    Article  CAS  Google Scholar 

  9. H.L. Zou, H.F. Xiang, X. Liang, X.Y. Feng, S. Cheng, Y. Jin, C.H. Chen, Electrospun Li3.9Cr0.3Ti4.8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. J. Alloy. Compd. 701, 99–106 (2017)

    Article  CAS  Google Scholar 

  10. M. Marinaro, F. Nobili, A. Birrozzi, S.K. Eswara Moorthy, U. Kaiser, R. Tossici, R. Marassi, Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries. Electrochim. Acta 109, 207–213 (2013)

    Article  CAS  Google Scholar 

  11. Y. Zhang, Y. Luo, Y. Chen, T. Lu, L. Yang, X. Cui, J. Xie, Enhanced Rate Capability and Low-Temperature Performance of Li4Ti5O12 Anode Material by Facile Surface Fluorination. ACS Appl. Mater. Interfaces 9, 17146–17155 (2017)

    Google Scholar 

  12. Y. Tao, Y. Xing, C. Rui, Y. Zhou, Z. Shao, Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J. Power Sources 195, 4997–5004 (2010)

    Article  Google Scholar 

  13. Y.J. Bai, C. Gong, Y.X. Qi, N. Lun, J. Feng, Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates. J. Mater. Chem. 22, 19054–19060 (2012)

    Article  CAS  Google Scholar 

  14. O. Dolotko, A. Senyshyn, M.J. Mühlbauer, H. Boysen, M. Monchak, H. Ehrenberg, Neutron diffraction study of Li4Ti5O12 at low temperatures. Solid State Sci. 36, 101–106 (2014)

    Article  CAS  Google Scholar 

  15. A.C. Larson, R.B. Von Dreele, Gsas. Report lAUR 86–748 (1994)

  16. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)

    Article  CAS  Google Scholar 

  17. C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, M.M. Thackeray, Studies of Mg-Substituted Li4 – xMg x Ti5 O12 Spinel Electrodes (0 ⩽ x ⩽ 1) for Lithium Batteries. J. Electrochem. Soc. 148, A102–A104 (2001)

    Article  CAS  Google Scholar 

  18. H. Cho, H. Son, D. Kim, M. Lee, S. Boateng, H. Han, K.M. Kim, S. Kim, H. Choi, T. Song, K.H. Lee, Impact of Mg-Doping Site Control in the Performance of Li4Ti5O12 Li-Ion Battery Anode: First-Principles Predictions and Experimental Verifications. J. Phys. Chem. C 121, 14994–15001 (2017)

    Article  CAS  Google Scholar 

  19. C. Lin, B. Ding, Y. Xin, F. Cheng, M.O. Lai, L. Lu, H. Zhou, Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: Synergistic effect of doping and compositing. J. Power Sources 248, 1034–1041 (2014)

    Article  CAS  Google Scholar 

  20. H. Zou, X. Liang, X. Feng, H. Xiang, Chromium-Modified Li4Ti5O12 with a Synergistic Effect of Bulk Doping, Surface Coating, and Size Reducing. ACS Appl. Mater. Interfaces 8, 21407–21416 (2016)

    Article  CAS  Google Scholar 

  21. F. Li, M. Zeng, J. Li, H. Xu, Preparation and Electrochemical Performance of Mg-doped Li4Ti5O12 Nanoparticles as Anode Materials for Lithium-Ion Batteries. Int. J. Electrochem. Sc. 10, 10445–10453 (2015)

    CAS  Google Scholar 

  22. H. Song, T.-G. Jeong, S.-W. Yun, E.-K. Lee, S.-A. Park, Y.-T. Kim, An upper limit of Cr-doping level to Retain Zero-strain Characteristics of Li4Ti5O12 Anode Material for Li-ion Batteries. Sci. Rep. 7, (2017)

  23. A.D. Robertson, L. Trevino, H. Tukamoto, J.T.S. Irvine, New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries. J. Power Sources 81, 352–357 (1999)

    Article  Google Scholar 

  24. X. Li, J. Mao, A. Li, Ti5O12–rutile TiO2 nanocomposite with an excellent high rate cycling stability for lithium ion batteries. New J. Chem. 39 4, 4430–4436 (2015)

    Article  Google Scholar 

  25. H. Song, S.W. Yun, H.H. Chun, M.G. Kim, K.Y. Chung, H.S. Kim, B.W. Cho, Y.T. Kim, Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy Environ. Sci. 5, 9903–9913 (2012)

    Article  CAS  Google Scholar 

  26. X. Han, Z. Zhao, Y. Xu, D. Liu, H. Zhang, C. Zhao, Synthesis and characterization of F-doped nanocrystalline Li4Ti5O12/C compounds for lithium-ion batteries. Rsc Adv. 4, 41968–41975 (2014)

    Article  CAS  Google Scholar 

  27. W. Wang, B. Jiang, W. Xiong, Z. Wang, S. Jiao, A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries. Electrochim. Acta 114, 198–204 (2013)

    Article  CAS  Google Scholar 

  28. D. Liu, C. Ouyang, J. Shu, J. Jiang, Z. Wang, L. Chen, Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. Phys. Status Solidi B 243, 1835–1841 (2006)

    Article  CAS  Google Scholar 

  29. Z. Zhao, Y. Xu, M. Ji, H. Zhang, Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries. Electrochim. Acta 109, 645–650 (2013)

    Article  CAS  Google Scholar 

  30. Y. Chen, C. Qian, P. Zhang, R. Zhao, J. Lu, M. Chen, Fluoride doping Li4Ti5O12 nanosheets as anode materials for enhanced rate performance of lithium-ion batteries. J. Electroanal. Chem. 815, 123–129 (2018)

    Article  CAS  Google Scholar 

  31. Y. Ma, B. Ding, G. Ji, J.Y. Lee, Carbon-Encapsulated F-Doped Li4Ti5O12 as a High Rate Anode Material for Li+ Batteries. Acs Nano 7, 10870–10878 (2013)

    Article  CAS  Google Scholar 

  32. Q. Huang, Z. Yang, J. Mao, Mechanisms of the decrease in low-temperature electrochemical performance of Li4Ti5O12-based anode materials. Sci. Rep. 7, (2017)

  33. R.W.G. Wyckoff, Crystal Structures. (Interscience Publishers, 1963)

  34. J. Zemann, Die Kristallstruktur von Li2CO3. Acta Crystallogr. 10, 664–666 (1957)

    Article  CAS  Google Scholar 

  35. H. Ott, XI. Die Strukturen von MnO, MnS, AgF, NiS, SnJ4, SrCl2, BaF2; Präzisionsmessungen einiger Alkalihalogenide. Z. Krist-Cryst. Mater. (1926)

  36. J. Sugiyama, H. Nozaki, I. Umegaki, K. Mukai, K. Miwa, S. Shiraki, T. Hitosugi, A. Suter, T. Prokscha, Z. Salman, J.S. Lord, M. Månsson, Li-ion diffusion in Li4Ti5O12 and LiTi2O4 battery materials detected by muon spin spectroscopy. Phys. Rev. B 92, (2015)

  37. S. Scharner, W. Weppner, P. Schmid-Beurmann, Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel. J. Electrochem. Soc. 146, 857–861 (1999)

    Article  CAS  Google Scholar 

  38. W. Schmidt, M. Wilkening, Discriminating the Mobile Ions from the Immobile Ones in Li4 + x Ti5O12: Li-6 NMR Reveals the Main Li+ Diffusion Pathway and Proposes a Refined Lithiation Mechanism. J. Phys. Chem. C 120, 11372–11381 (2016)

    Article  CAS  Google Scholar 

  39. S. Tanaka, M. Kitta, T. Tamura, Y. Maeda, T. Akita, M. Kohyama, Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12(001) interfaces by first-principles calculations. J. Mater. Sci. 49, 4032–4037 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Panxi Strategic Resources Innovation Development Fund of Sichuan Province (1840STC30696/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Huang, Q. & Mao, J. Improve the low-temperature electrochemical performance of Li4Ti5O12 anode materials by ion doping. J Mater Sci: Mater Electron 31, 21444–21454 (2020). https://doi.org/10.1007/s10854-020-04658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04658-z

Navigation