Skip to main content
Log in

Research progress on the low-temperature electrochemical performance of Li4Ti5O12 anode material

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li4Ti5O12 is regarded as the ideal anode material for its stable structure, high charge/discharge platform, and safety performance. But low ionic and electronic conductivity of the Li4Ti5O12 anode material under the condition of low temperature greatly limit its application in practical production. In this paper, some modified methods for improving the low-temperature electrochemical performance of Li4Ti5O12 anode material were summarized. Meanwhile, we explored its influence mechanisms at low temperature, one is, with the subtle changes of lattice parameters and oxygen atom fraction coordinates of Li4Ti5O12 at low temperature, the changes of the bond length influence the structural stability of Li4Ti5O12 and the diffusion path of lithium ions; the other reason is that the charge transfer resistance increases obviously and the lithium ion diffusion coefficient reduces under low temperature. Finally, the research directions for improving the low-temperature electrochemical performance were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ariyoshi K, Yamato R, Ohzuku T (2005) Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries. Electrochim Acta 51:1125–1129

    Article  CAS  Google Scholar 

  2. Ronci F, Reale P, Scrosati B, Panero S, Albertini VR, Perfetti P, Michiel MD, Merino JM (2002) High-resolution in-situ structural measurements of the Li4/3Ti5/3O4 “zero-strain” insertion material. J Phys Chem B 106:3082–3086

    Article  CAS  Google Scholar 

  3. Panero S, Reale P, Ronci F, Scrosati B, Perfettib P, Albertini VR (2001) Refined, in-situ EDXD structural analysis of the Li[Li1/3Ti5/3]O4 electrode under lithium insertion–extraction. Phys Chem Chem Phys 3:845–847

    Article  CAS  Google Scholar 

  4. Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) Development of a high-power lithium-ion battery. J Power Sources 81–82:902–905

    Article  Google Scholar 

  5. Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julienc CM (2011) Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sources 196:3949–3954

    Article  CAS  Google Scholar 

  6. Peramunage D, Abraham KM (1998) Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells. J Electrochem Soc 145:2609–2615

    Article  CAS  Google Scholar 

  7. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:7

    Article  Google Scholar 

  8. Takami N, Inagaki H, Tatebayashi Y, Saruwatari H, Honda K, Egusa S (2013) High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications. J Power Sources 244:469–475

    Article  CAS  Google Scholar 

  9. Yan DX, Lu LG, Li Z, Feng XN, Ouyang MG, Jiang FC (2016) Durability comparison of four different types of high-power batteries in HEV and their degradation mechanism analysis. Appl Energy 179:1123–1130

    Article  Google Scholar 

  10. Amine BK, Belharouak L, Chen ZH, Tran T, Yumoto H, Ota N, Myung ST, Sun YK (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22:3052–3057

    Article  CAS  Google Scholar 

  11. Vītiņš G, Ķizāne A, Lūsis A, Tīliks J (2002) Electrical conductivity studies in system Li2TiO3-Li1.33Ti1.67O4. J Solid State Electrochem 6:311–319

    Article  Google Scholar 

  12. Prosini PP, Mancini R, Petrucci L, Contini V, Villano P (2001) Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications. Solid State Ionics 144:185–192

    Article  CAS  Google Scholar 

  13. Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Lil/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142:1431–1435

    Article  CAS  Google Scholar 

  14. Bresser D, Paillard E, Copley M, Bishop P, Winter M, Passerini S (2012) The importance of “going nano” for high power battery materials. J Power Sources 219:217–222

    Article  CAS  Google Scholar 

  15. Kashkooli AG, Lui G, Farhad S, Chen ZW (2016) Nano-particle size effect on the performance of Li4Ti5O12 spinel. Electrochim Acta 196:33–40

    Article  CAS  Google Scholar 

  16. Cao N, Wen L, Songa ZH, Meng W, Qin X (2016) Li4Ti5O12/reduced graphene oxide composite as a high-rate anode material for lithium ion batteries. Electrochim Acta 209:235–243

    Article  CAS  Google Scholar 

  17. Choi JH, Ryu WH, Park K, Jo JD, Jo SM, Lim DS, Kim ID (2014) Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries. Sci Rep 4:7334

    Article  CAS  Google Scholar 

  18. Xu C, Xue LH, Zhang W, Zhang WX (2014) Hydrothermal synthesis of Li4Ti5O12/TiO2 Nano-composite as high performance anode material for Li-ion batteries. Electrochim Acta 147:506–512

    Article  CAS  Google Scholar 

  19. Li XP, Mao J (2015) A Li4Ti5O12–rutile TiO2 nanocomposite with an excellent high rate cycling stability for lithium ion batteries. New J Chem 39:4430–4436

    Article  CAS  Google Scholar 

  20. Huang SH, Wen ZY, Zhu XJ, Lin ZX (2007) Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries. J Power Sources 165:408–412

    Article  CAS  Google Scholar 

  21. Tian B, Xiang H, Zhang L, Wang HH (2010) Niobium doped lithium titanate as a high rate anode material for Li-ion batteries. Electrochim Acta 55:5453–5458

    Article  CAS  Google Scholar 

  22. Ni HF, Song WL, Fan LZ (2016) Double carbon decorated lithium titanate as anode material with high rate performance for lithium-ion batteries. Progress in Natural Science: Mater International 26:283–288

    Article  CAS  Google Scholar 

  23. Hu MJ, Jiang YZ, Yan M (2014) High rate Li4Ti5O12–Fe2O3 and Li4Ti5O12–CuO composite anodes for advanced lithium ion batteries. J Alloys Compd 603:202–206

    Article  CAS  Google Scholar 

  24. Zhang H, Liu Y, Wang T, Yang Y, Shi SJ, Yang G (2016) Li2ZrO3-coated Li4Ti5O12 with nanoscale interface for high performance lithium-ion batteries. Appl Surf Sci 368:56–62

    Article  CAS  Google Scholar 

  25. Zhang QY, Verde MG, Seo JK, Li X, Meng YS (2015) Structural and electrochemical properties of Gd-doped Li4Ti5O12 as anode material with improved rate capability for lithium-ion batteries. J Power Sources 280:355–362

    Article  CAS  Google Scholar 

  26. Wen SJ, Li GJ, Ren RM, Li CY (2015) Preparation of spherical Li4Ti5O12 anode materials by spray drying. Mate Lett 148:130–133

    Article  CAS  Google Scholar 

  27. Zhang Y, Zhang Y, Huang L, Zhou ZF, Wang JF, Liu H, Wu H (2016) Hierarchical carambola-like Li4Ti5O12-TiO2 composites as advanced anode materials for lithium-ion batteries. Electrochim Acta 195:124–133

    Article  CAS  Google Scholar 

  28. Dolotko O, Senyshyn A, Mühlbauer MJ, Boysen H, Monchak M, Ehrenberg H (2014) Neutron diffraction study of Li4Ti5O12 at low temperatures. Solid State Sci 36:101–106

    Article  CAS  Google Scholar 

  29. Wu DM (2012) Kinetic performance of Li4Ti5O12 anode material synthesized by the solid-state method. Ionics 18:559–564

    Article  CAS  Google Scholar 

  30. Huang CK, Sakamoto JS, Wolfenstine J, Surampudi S (2000) The limits of low-temperature performance of Li-ion cells. J Electrochem Soc 147(8):2893–2896

    Article  CAS  Google Scholar 

  31. Pohjalainen E, Rauhala T, Vakeapaä M, Kallioinen J, Kallio T (2015) Effect of Li4Ti5O12 particle size on the performance of lithium ion battery electrodes at high C rates and low temperatures. J Phys Chem B 119:2277–2283

    CAS  Google Scholar 

  32. Yuan T, Cai R, Ran R, Zhou Y, Shao ZP (2010) A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase. J Alloys Compd 505:367–373

    Article  CAS  Google Scholar 

  33. Allen JL, Jow TR, Wolfenstine J (2006) Low temperature performance of nanophase Li4Ti5O12. J Power Sources 159:1340–1345

    Article  CAS  Google Scholar 

  34. Yoon SB, Kim HK, Roh KC, Kim KB (2015) Electrochemical kinetics investigation of Li4Ti5O12/reduced graphene oxide nanocomposite using voltammetric charge analysis. J Electrochem Soc 162(4):A667–A673

    Article  CAS  Google Scholar 

  35. Yuan T, Yu X, Cai R, Zhou Y, Shao ZP (2010) Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J Power Sources 195:4997–5004

    Article  CAS  Google Scholar 

  36. Nugroho A, Chang W, Kim SJ, Chung KY, Kim J (2012) Superior high rate performance of core-shell Li4Ti5O12/carbon nanocomposite synthesized by a supercritical alcohol approach. RSC Adv 2:10805–10808

    Article  CAS  Google Scholar 

  37. Pohjalainen E, Kallioinen J, Kallio T (2015) Comparative study of carbon free and carbon containing Li4Ti5O12 electrodes. J Power Sources 279:481–486

    Article  CAS  Google Scholar 

  38. Liu JH, Wei XF, Liu XW (2015) Two-dimensional wavelike spinel lithium titanate for fast lithium storage. Sci Rep 5:9782

    Article  CAS  Google Scholar 

  39. Zhang W, Liu DW, Edwards DD (2016) Self-supported lithium titanium oxide nanosheet arrays decorated with molybdenum disulfide for high-performance lithium-ion batteries. Energy Technol 4:1420–1426

    Article  CAS  Google Scholar 

  40. Li ZY, Ding FX, Zhao YG, Wang YD, Li JL, Yang K, Gao F (2016) Synthesis and electrochemical performance of Li4Ti5O12 submicrospheres coated with TiN as anode materials for lithium-ion battery. Ceram Int 42:15464–15470

    Article  CAS  Google Scholar 

  41. Chen JZ, Yang L, Fang SH, Tang YF (2010) Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries. Electrochim Acta 55:6596–6600

    Article  CAS  Google Scholar 

  42. Bai YJ, Gong C, Qi YX (2012) Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates. J Mater Chem 22:19054–19060

    Article  CAS  Google Scholar 

  43. Qiu CX, Yuan ZZ, Liu L, Ye N, Liu JC (2013) Sol–gel preparation and electrochemical properties of La-doped Li4Ti5O12 anode material for lithium-ion battery. J Solid State Electrochem 17:841–847

    Article  CAS  Google Scholar 

  44. Yi TF, Xie Y, Wu QJ, Liu HP, Jiang LJ, Ye MF, Zhu RS (2012) High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries. J Power Sources 214:220–226

    Article  CAS  Google Scholar 

  45. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Article  CAS  Google Scholar 

  46. Rahman MM, Wang JZ, Hassan MF, Liu HK (2011) Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12 -TiO2: a nanocomposite anode material for Li-ion batteries. Adv Energy Mater 1:212–220

    Article  CAS  Google Scholar 

  47. Yan GF, Fang HS, Zhao HJ, Li GS, Yang Y, Li LP (2009) Ball milling-assisted sol–gel route to Li4Ti5O12 and its electrochemical properties. J Alloys Compd 470:544–547

    Article  CAS  Google Scholar 

  48. Yuan T, Cai R, Wang K, Ran R, Liu SM, Shao ZP (2009) Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery. Ceram Int 35:1757–1768

    Article  CAS  Google Scholar 

  49. Marinaroa M, Nobilia F, Birrozzi A, Eswara Moorthy SK, Kaiser U, Tossici R, Marassi R (2013) Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries. Electrochim Acta 109:207–213

    Article  Google Scholar 

  50. Yaqub A, Pervez SA, Farooq U, Saleem M, Doh CH, Lee YJ, Hwang M, Choi JH, Kim D (2014) Effect of copper content in the new conductive material Cu-SPB used in low-temperature Li-ion batteries. J Korean Phys Soc 65:317–324

    Article  CAS  Google Scholar 

  51. Pelchita EL, Bahel WK (2000) A low-temperature electrolyte for lithium and lithium-ion batteries. J Power Sources 88:192–196

    Article  Google Scholar 

  52. Li LF, Lee HS, Li H, Yang XQ, Nam KW, Yoon WS, Mc Breen J, Huang XJ (2008) New electrolytes for lithium ion batteries using LiF salt and boron based anion receptor. J Power Sources 184:517–521

    Article  CAS  Google Scholar 

  53. Zhang SS (2006) A unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 8:1423–1428

    Article  CAS  Google Scholar 

  54. Kufian MZ, Majid SR (2010) Performance of lithium-ion cells using M LiPF6 in EC/DEC (υ/υ = 1/2) electrolyte with ethyl propionate additive. Ionics 16:409–416

    Article  CAS  Google Scholar 

  55. Zhang SS, Xu K, Jow TR (2002) A new approach toward improved low temperature performance of Li-ion battery. J Electrochem Commun 4(11):928–932

    Article  CAS  Google Scholar 

  56. Mandal BK, Padhi AK, Shi Z, Chakraborty S, Filler R (2006) New low temperature electrolytes with thermal runway in habitation for Li-ion rechargeable battery. J Power Sources 162:690–695

    Article  CAS  Google Scholar 

  57. Ge H, Hao TT, Zhang B, Song XM (2016) Nanoparticles-constructed spinel Li4Ti5O12 with extra surface lithium storage capability towards advanced Lithium-on batteries. Electrochim Acta 211:119–125

    Article  CAS  Google Scholar 

  58. Fang W, Cheng XQ, Zuo PJ, Ma YL, Yin GP (2013) A facile strategy to prepare nano-crystalline Li4Ti5O12/C anode material via polyvinyl alcohol as carbon source for high-rate rechargeable Li-ion batteries. Electrochim Acta 93:173–178

    Article  CAS  Google Scholar 

  59. Chen XM, Guan XF, Li LP, Li GS (2012) Defective mesoporous Li4Ti5O12 −y: an advanced anode material with anomalous capacity and cycling stability at a high rate of 20 C. J Power Sources 210:297–302

    Article  CAS  Google Scholar 

  60. Das A, Thakur AK, Kumar K (2013) Exploring low temperature Li+ ion conducting plastic battery electrolyte. Ionics 19:1811–1823

    Article  CAS  Google Scholar 

  61. Yoshima K, Harada Y, Takami N (2016) Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries. J Power Sources 302:283–290

    Article  CAS  Google Scholar 

  62. Zaghiba K, Dontignya M, Perret P, Julien CM (2014) Electrochemical and thermal characterization of lithium titanate spinel anode in C-LiFePO4//C-Li4Ti5O12 cells at sub-temperatures. J Power Sources 248:1050–1057

    Article  Google Scholar 

  63. Zaghib K, Dontigny M, Guerfi A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K, Hovington P, Mauger A, Groult H, Julien CM (2012) An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sources 216:192–200

    Article  CAS  Google Scholar 

  64. Manual Stephan A (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  Google Scholar 

  65. Zhang SS, Xu K, Jow TR (2003) Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. J Solid State Electrochem 7:147–151

    Article  CAS  Google Scholar 

  66. Laumann A, Boysen H, Bremholm M, Fehr KT, Hoelzel M, Holzapfel M (2011) Lithium migration at high temperatures in Li4Ti5O12 studied by neutron diffraction. Chem Mater 23:2753–2759

    Article  CAS  Google Scholar 

  67. Zhu YR, Yin LC, Yi TF, Liu HP, Xie Y, Zhu RS (2013) Electrochemical performance and lithium-ion intercalation kinetics of submicron-sized Li4Ti5O12 anode material. J Alloys Compd 547:107–112

    Article  CAS  Google Scholar 

  68. Tanaka S, Kitta M, Tamura T, Maeda Y, Akita T, Kohyama M (2014) Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12 (001) interfaces by first-principles calculations. J Mater Sci 49:4032–4037

    Article  CAS  Google Scholar 

  69. Jiang YM, Wang KX, Wu XY, Zhang HJ, Bartlett BM, Chen JS (2014) Li4Ti5O12 /TiO2 hollow spheres composed nanoflakes with preferentially exposed Li4Ti5O12 (011) facets for high-rate lithium ion batteries. ACS Appl Mat Interfaces 6:19791–19796

    Article  CAS  Google Scholar 

  70. Kitta M, Akita T, Tanaka S, Kohyama M (2014) Two-phase separation in a lithiated spinel Li4Ti5O12 crystal as confirmed by electron energy-loss spectroscopy. J Power Sources 257:120–125

    Article  CAS  Google Scholar 

  71. He YB, Liu M, Huang ZD, Zhang B, Yu Y, Li BH, Kang FY, Kim JK (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269–276

    Article  CAS  Google Scholar 

  72. Li X, Xu J, Huang PX, Yang W, Wang ZQ, Wang MS, Huang Y, Zhou Y, Qu MZ, Yu ZL, Lin YH (2016) In-situ carbon coating to enhance the rate capability of the Li4Ti5O12 anode material and suppress the electrolyte reduction decomposition on the electrode. Electrochim Acta 190:69–75

    Article  CAS  Google Scholar 

  73. Aldon L, Kubiak P, Womes M, Jumas JC, Fourcade JO, Tirado JL, Corredor JI, Vicente CP (2004) Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel. Chem Mater 16:5721–5725

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Yang, Z. & Mao, J. Research progress on the low-temperature electrochemical performance of Li4Ti5O12 anode material. Ionics 23, 803–811 (2017). https://doi.org/10.1007/s11581-017-2004-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2004-2

Keywords

Navigation