Skip to main content
Log in

High performance supercapacitors based on samarium molybdate/nitrogen and phosphorous co-doped reduced graphene oxide electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocomposites produced with samarium(III) molybdate/N, P co-doped reduced graphene oxide (Sm2MoO6/NPRGO) combination may be very useful in the field of supercapacitors due to the active interaction between these two components. In this study, we used the sonochemical method, which is quite simple and cheap, to produce Sm2MoO6/NPRGO nanocomposite, which draws attention with its high-quality electrochemical performance. Surface and structural properties of Sm2MoO6 nanoparticles, NPRGO and Sm2MoO6/NPRGO nanocomposite structures were studied by X-ray photoemission spectroscopy (XPS), nitrogen adsorption/desorption studies, scanning electron microscopy, and X-ray diffraction analysis. The symmetric supercapacitive performance of the Sm2MoO6/NPRGO electrode exhibits a specific capacitance of 689 F g−1 (at 2 mV s−1) and could maintain 99.9% capacity after 4000 charge–discharge cycles. Additionally, the symmetric supercapacitors based on nanocomposite electrode demonstrate a high energy density (23.2 W h kg−1 at 250 W kg−1), outstanding power density (8000 W kg−1 at 14.4 W h kg−1). Generally, this nanocomposite was synthesized for the first time and its supercapacitive properties were investigated. The nanocomposite electrode exhibited good supercapacitor response, remarkable rate performance and excellent cycling stability in both 0.5 M Na2SO4 electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.R. Salunkhe, Y. Lee, K. Chang, J. Li, P. Simon, J. Tang, N.L. Torad, C. Hu, Y. Yamauchi, Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chem. Eur. J. 20, 13838 (2014)

    CAS  Google Scholar 

  2. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777 (2015)

    CAS  Google Scholar 

  3. Y. Liu, X. Wu, Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries. J. Energy Chem. 56, 223 (2021)

    Google Scholar 

  4. H. Liu, D. Zhao, P. Hu, K. Chen, X. Wu, D. Xue, Design strategies toward achieving high-performance CoMoO4@Co1.62Mo6S8 electrode materials. Mater. Today Phys. 13, 100197 (2020)

    Google Scholar 

  5. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132 (2010)

    CAS  Google Scholar 

  6. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72 (2013)

    CAS  Google Scholar 

  7. C. Liu, X. Wu, B. Wang, Performance modulation of energy storage devices: a case of Ni-Co-S electrode materials. Chem. Eng. J. 392, 123651 (2020)

    CAS  Google Scholar 

  8. Y. Zhao, J. He, M. Dai, D. Zhao, X. Xiang, L. Baodan, Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices. J. Energy Chem. 45, 67 (2020)

    Google Scholar 

  9. H. Zhang, Z. Hu, M. Li, L. Hua, S. Jiao, A high-performance supercapacitor based on a polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion. J. Mater. Chem. A 2, 17024 (2014)

    CAS  Google Scholar 

  10. P. Liu, J. Yan, Z. Guang, Y. Huang, X. Lib, W. Huang, Recent advancements of polyaniline-based nanocomposites for supercapacitors. J. Power Sources 424, 108 (2019)

    CAS  Google Scholar 

  11. H. Gholipour-Ranjbar, M.R. Ganjali, P. Norouzi, H.R. Naderi, Functionalized graphene aerogel with p-phenylenediamine and its composite with porous MnO2: investigating the effect of functionalizing agent on supercapacitive performance. J. Mater. Sci. Mater. Electron. 27, 10163 (2016)

    CAS  Google Scholar 

  12. R. Arunachalam, R.K.V. Prataap, R.P. Raj, S. Mohan, J. Vijayakumar, L. Péter, M.A. Ahmad, Pulse electrodeposited RuO2 electrodes for high-performance supercapacitor applications. Surf. Eng. 35, 102 (2019)

    CAS  Google Scholar 

  13. A. Hodaei, A.S. Dezfuli, N.R. Naderi, A high-performance supercapacitor based on N-doped TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 29, 14596 (2018)

    CAS  Google Scholar 

  14. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103 (2009)

    CAS  Google Scholar 

  15. C. Portet, P.L. Taberna, P. Simon, E. Flahaut, C. Laberty-Robert, High power density electrodes for carbon supercapacitor applications. Electrochim. Acta 50, 4174 (2005)

    CAS  Google Scholar 

  16. K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11, 387 (2001)

    CAS  Google Scholar 

  17. Y. Li, S. Zhang, M. Ma, X. Mu, Y. Zhang, J. Du, Q. Hu, B. Huang, X. Hua, G. Liu, E. Xie, Z. Zhang, Manganese-doped nickel molybdate nanostructures for high-performance asymmetric supercapacitors. Chem. Eng. J. 372, 452 (2019)

    CAS  Google Scholar 

  18. Y. Teng, Y. Li, D. Yu, Y. Meng, Y. Wu, X. Zhao, X. Liu, The Microwave-assisted hydrothermal synthesis of CoV2O6 and Co3V2O8 with morphology tuning by pH adjustments for supercapacitor applications. Chem. Select 4, 956 (2019)

    CAS  Google Scholar 

  19. H. Xuan, Y. Xu, Y. Zhang, H. Li, P. Han, Y. Du, One-step combustion synthesis of porous CNTs/C/NiMoO4 composites for high-performance asymmetric supercapacitors. J. Alloys Compd. 745, 135 (2018)

    CAS  Google Scholar 

  20. C. Wei, Y. Huang, J. Yan, X. Chen, X. Zhang, Synthesis of hierarchical carbon sphere/NiMoO4 composite materials for supercapacitor electrodes. Ceram. Int. 42, 15694 (2016)

    CAS  Google Scholar 

  21. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 423, 1025 (2017)

    CAS  Google Scholar 

  22. Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107 (2012)

    CAS  Google Scholar 

  23. S.M.B.M. Hosseini, S.M. Baizaee, H.R. Naderi, A.D. Kordi, Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for supercapacitors electrode. Appl. Surf. Sci. 427, 507 (2018)

    Google Scholar 

  24. X. Li, Z. Wang, Y. Qiu, Q. Pan, P.A. Hu, 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J. Alloys Compd. 620, 31 (2015)

    CAS  Google Scholar 

  25. F. Farbod, M. Mazloum-Ardakani, H.R. Naderi, H. Mohammadian-Sarcheshmeh, Synthesis of a porous interconnected nitrogen-doped graphene aerogel matrix incorporated with ytterbium oxide nanoparticles and its application in superior symmetric supercapacitors. Electrochim. Acta 306, 480 (2019)

    CAS  Google Scholar 

  26. H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. J. Mater. Sci. Mater. Electron. 29, 3035 (2018)

    CAS  Google Scholar 

  27. H.R. Naderi, P. Norouzi, M.R. Ganjali, Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite. Appl. Surf. Sci. 366, 552 (2016)

    CAS  Google Scholar 

  28. J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839 (2013)

    CAS  Google Scholar 

  29. X. Yu, Y. Kang, H.S. Park, Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon 101, 49 (2016)

    CAS  Google Scholar 

  30. T. Wang, L.X. Wang, D.L. Wu, W. Xia, D.Z. Jia, Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor. Sci. Rep. 5, 9591 (2015)

    CAS  Google Scholar 

  31. P.M. Pandian, A. Pandurangan, Copper nanoparticles anchored onto boron-doped graphene nanosheets for use as a high performance asymmetric solid-state supercapacitor. RSC Adv. 9, 3443 (2019)

    CAS  Google Scholar 

  32. S.S. Balaji, M. Karnan, P. Anandhaganesh, S.M. Tauquir, M. Sathish, Performance evaluation of B-doped graphene prepared via two different methods in symmetric supercapacitor using various electrolytes. Appl. Surf. Sci. 491, 560 (2019)

    CAS  Google Scholar 

  33. V. Thirumal, A. Pandurangan, R. Jayavel, K.S. Venkatesh, N.S. Palani, R. Ragavan, R. Ilangovan, Single pot electrochemical synthesis of functionalized and phosphorus doped graphene nanosheets for supercapacitor applications. J. Mater. Sci. Mater. Electron. 26, 6319 (2015)

    CAS  Google Scholar 

  34. C. Zhang, X. Wang, Q. Liang, X. Liu, Q. Weng, J. Liu, Y. Yang, Z. Dai, K. Ding, Y. Bando, J. Tang, D. Golberg, Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 163, 2054 (2016)

    Google Scholar 

  35. X. Ma, G. Ning, C. Qi, C. Xu, J. Gao, Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 14415 (2014)

    CAS  Google Scholar 

  36. A. Yari, S. Heidari-Fathabad, A high-performance supercapacitor based on cerium molybdate nanoparticles anchored on N, P co-doped reduced graphene oxide nanocomposite as the electrode. J. Mater. Sci. Mater. Electron. 31, 13051 (2020)

    CAS  Google Scholar 

  37. F. Razmjooei, K.P. Singh, M.Y. Song, J.S. Yu, Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon 78, 257 (2014)

    CAS  Google Scholar 

  38. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010)

    CAS  Google Scholar 

  39. H.R. Naderi, P. Norouzi, M.R. Ganjali, H. Gholipour-Ranjbar, Synthesis of a novel magnetite/nitrogen-doped reduced graphene oxide nanocomposite as high performance supercapacitor. Powder Technol. 302, 298 (2016)

    CAS  Google Scholar 

  40. K.P. Mani, G. Vimal, P.R. Biju, C. Joseph, N.V. Unnikrishnan, M.A. Ittyachen, Optical nonlinearity and photoluminescence studies of red emitting samarium molybdate nanophosphor. ECS J. Solid State Sci. Technol. 4, R67 (2015)

    CAS  Google Scholar 

  41. S. Behvandi, A. Sobhani-Nasab, M.A. Karimi, E. Sohouli, M.S. Karimi, M.R. Ganjali, F. Ahmadi, M. Rahimi-Nasrabadi, Synthesis and characterization of Sm2(MoO4)3, Sm2(MoO4)3/GO and Sm2(MoO4)3/C3N4 nanostructures for improved photocatalytic performance and their anti-cancer the MCF-7 cells. Polyhedron 180, 114424 (2020)

    CAS  Google Scholar 

  42. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor. Appl. Surf. Sci. 402, 245 (2017)

    CAS  Google Scholar 

  43. B.J. Reddy, P. Vickraman, A.S. Justin, Investigation of novel zinc molybdate–graphene nanocomposite for supercapacitor applications. Appl. Phys. A 124, 408 (2018)

    Google Scholar 

  44. H. Wan, J. Jiang, X. Ji, L. Miao, L. Zhang, K. Xu, H. Chen, Y. Ruan, Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters for supercapacitors. Mater. Lett. 108, 164 (2013)

    CAS  Google Scholar 

  45. H. Cao, N. Wu, Y. Liu, S. Wang, W. Du, J. Liu, Facile synthesis of rod-like manganese molybdate crystallines with two-dimentional nanoflakes for supercapacitor application. Electrochim. Acta 225, 605 (2017)

    CAS  Google Scholar 

  46. Y.P. Gao, K.J. Huang, C.X. Zhang, S.S. Song, X. Wu, High-performance symmetric supercapacitor based on flower-like zinc molybdate. J. Alloys Compd. 731, 1151 (2018)

    CAS  Google Scholar 

  47. M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Mater. Lett. 94, 197 (2013)

    CAS  Google Scholar 

  48. X. Xia, W. Lei, Q. Hao, W. Wang, X. Wang, One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim. Acta 99, 253 (2013)

    CAS  Google Scholar 

  49. M.C. Liu, L.B. Kong, C. Lu, X.J. Ma, X.M. Li, Y.C. Luo, L. Kang, Design and synthesis of CoMoO4–NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors. J. Mater. Chem. A 1, 1380 (2013)

    CAS  Google Scholar 

  50. B. Senthilkumar, D. Meyrick, Y.S. Lee, R.K. Selvan, Synthesis and improved electrochemical performances of nano β-NiMoO4–CoMoO4·xH2O composites for asymmetric supercapacitors. RSC Adv. 3, 16542 (2013)

    CAS  Google Scholar 

  51. B. Senthilkumar, R.K. Selvan, Hydrothermal synthesis and electrochemical performances of 1.7 V NiMoO4·xH2O||FeMoO4 aqueous hybrid supercapacitor. J. Colloid Interface Sci. 426, 280 (2014)

    CAS  Google Scholar 

  52. P. Aryanrad, H.R. Naderi, E. Kohan, M.R. Ganjali, M. Baghernejad, A.S. Dezfuli, Europium oxide nanorod-reduced graphene oxide nanocomposites towards supercapacitors. RSC Adv. 10, 17543 (2020)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Yari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathabad, S.H., Yari, A. High performance supercapacitors based on samarium molybdate/nitrogen and phosphorous co-doped reduced graphene oxide electrodes. J Mater Sci: Mater Electron 31, 21355–21367 (2020). https://doi.org/10.1007/s10854-020-04648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04648-1

Navigation