Skip to main content

Advertisement

Log in

Single and ternary nanocomposite electrodes of Mn3O4/TiO2/rGO for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene (G) and ternary nanocomposites of Mn3O4, TiO2, and reduced graphene oxide(rGO) electrodes have been prepared for supercapacitor applications. The as-synthesized samples were characterized using several techniques including XRD, SEM, TEM, XPS, and Raman spectroscopy. Electrochemical characterizations were studied via cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). XRD patterns of TiO2 and Mn3O4 showed the formation of anatase and hausmannite tetragonal nanoparticles, respectively, whereas rGO and G showed an amorphous structure. The TEM analysis showed spherical shaped particles with less than 50 nm sizes for Mn3O4, nanotube for TiO2, fiber structure for rGO, and layered structure for graphene. The Mn3O4/TiO2/rGO ternary nanocomposite electrode presented a much higher specific capacitance than its single individual constituents. The ternary nanocomposite has a specific capacitance of 356 F g−1 in 6 M KOH aqueous electrolyte and respectable cycling performance, with 91% capacitance retained over 3000 cycles referring to its suitability for supercapacitor applications. An asymmetric supercapacitor (ASC) was constructed using a Mn3O4–TiO2–rGO (MTrGO) as a positive electrode and G as a negative electrode. The organized (ASC) works steadily under the potential window of 0–1.8 V and provides a high-energy density of 31.95 Wh kg−1 at a power density of 7188 W kg−1 complemented by satisfactory cycle stability with 87% capacitance retention over 1000 cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aray A, Sharma AL (2019) J Solid State Electrochem 23(4):997–1059

    Article  CAS  Google Scholar 

  2. Kubota K, Kumakura S, Yoda Y, Kuroki K, Komab S (2017) Adv Energy Mater. https://doi.org/10.1002/aenm.201703415 Wiley on Line

  3. Maile NC et al (2019) J Mater Sci Mater Electron 30:5555–5566

    Article  CAS  Google Scholar 

  4. Libich J, Máca J, Vondrák J, Čech O, MSedlaříková M (2018) J Energy Storage 17:224–227

    Article  Google Scholar 

  5. Ma Y, Zha M, Dong Y, Li L, Hu G (2019) Mater Res Expr 6(11):6. https://doi.org/10.1088/2053-1591/ab45bd

    Article  CAS  Google Scholar 

  6. Najib S, Erdem E (2019) Nanoscale Adv 1(8):2817–2827

    Article  Google Scholar 

  7. Yadav HM, Ghodake GS, Kim DY, Ramesh S, Maile NC, Lee DS, Shinde SK (2019) Colloids Surf 184 184:110500

    Article  CAS  Google Scholar 

  8. Shinde SK, Jalak MB, Kim SY, Yadav HM, Ghodake GS, Kadam AA, Kim DY (2018) Ceram Int 44(18):23102–23108

    Article  CAS  Google Scholar 

  9. Shinde SK, Mohite SM, Kadam AA, Yadav HM, Ghodake GS, Rajpure KY, Lee DS, Kim DY (2019) J Electroanalyt Chem 850:113433

    Article  CAS  Google Scholar 

  10. Bryan AM, Santino LM, Lu Y, Acharya S, D’Arcy JM (2016) Chem Mater 28(17):5989–5998

    Article  CAS  Google Scholar 

  11. Hao X, Zhao J, Li Y, Zhao Y, Ma D, Li L (2011) Colloid Surf Physicochem Eng Aspect 374(1-3):42–47

    Article  CAS  Google Scholar 

  12. Zhou T, Mo S, Zhou S, Zou W, Liu Y, Yuan D (2011) J Mater Sci 46(10):3337–3342

    Article  CAS  Google Scholar 

  13. Zhang X, Yu P, Zhang D, Zhang H, Sun X, Ma Y (2013) Mater Lett 92:401–404

    Article  CAS  Google Scholar 

  14. Zhang X, Sun X, Chen Y, Zhang D, Ma Y (2012) Mater Lett 68:336–339

    Article  CAS  Google Scholar 

  15. Sobaszek M, Siuzdak K, Sawczak M, Ryl J, Bogdanowicz R (2016) Thin Solid Films 601(Supplement C):35–40

    Article  CAS  Google Scholar 

  16. Zhou M, Glushenkov AM, Kartachova O, Li Y, Chen Y (2015) J ElectrochemSoc 162(5):A5065–A5069

    Article  CAS  Google Scholar 

  17. Salari M, Aboutalebi SH, Chidembo AT, Nevirkovets IP, Konstantinov K, Liu HK (2012) Phys Chem Chem Phys 14(14):4770–4779

    Article  CAS  PubMed  Google Scholar 

  18. Wang T, Peng Z, Wang Y, Tang J, Zheng G (2013) Sci Rep 3:1–9

    Google Scholar 

  19. Tang H, Sui Y, Zhu X, Bao Z (2015) Nanoscale Res Lett 10(1):260–270

    Article  PubMed Central  CAS  Google Scholar 

  20. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Adv Funct Mater 22(12):2632–2641

    Article  CAS  Google Scholar 

  21. Hulicova J, Puziy A, Poddubnaya O, Suarez G, Juan M, Lu G (2009) J Am Chem Soc 131:5026–5027

    Article  CAS  Google Scholar 

  22. Futaba D, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 12:987–994

    Article  CAS  Google Scholar 

  23. An Z (2020) Materials 13:716. https://doi.org/10.3390/ma13030716

    Article  CAS  PubMed Central  Google Scholar 

  24. Sing KSW et al (1985) Pure and Appl Chem 5:603–619

    Article  Google Scholar 

  25. Kruk M, Jaroniec M (2001) Chem Mater 13(10):3169–3183

    Article  CAS  Google Scholar 

  26. Wickramaratne NP (2014) Ph. D. Thesis, Kent State University, USA

  27. Guerra E, Shanmugharaj A, Choi W, Ryu S (2013) Appl Catal A 468:467–474

    Article  CAS  Google Scholar 

  28. Sheshmani S, Fashapoyeh M (2013) J Acta Chim Slov 60:813–822

    CAS  Google Scholar 

  29. Alam S, Sharma N, Kumar L (2017) Graphene 6(01):1–18

    Article  CAS  Google Scholar 

  30. Perez A, Saja J, Manchado A (2008) J Mater Chem 18:2221–2226

    Article  CAS  Google Scholar 

  31. Qiu S, Kalita S (2006) Mater Sci Engin A 435-436:327–332

    Article  CAS  Google Scholar 

  32. Guo H, Wang X, Qian Q, Wang F, Xia X (2009) ACS Nano 3(9):2653–2659

    Article  CAS  PubMed  Google Scholar 

  33. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff R (2011) Carbon 49(9):3019–3023

    Article  CAS  Google Scholar 

  34. Jeong HK et al (2008) J Am Chem Soc 130:1362–1366

    Article  CAS  PubMed  Google Scholar 

  35. Wu Z, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H (2010) ACS Nano 4(6):3187–3194

    Article  CAS  PubMed  Google Scholar 

  36. Petit C, Seredych M, Bandosz TJ (2009) J Mater Chem 19(48):9176–9185

    Article  CAS  Google Scholar 

  37. Fan X, Yu C, Yang J, Ling Z, Qiu J (2014) Carbon 70:130–141

    Article  CAS  Google Scholar 

  38. Tiekun J, Fang F, Dongsheng Y, Jianliang C, Guang S (2018) Appl Surf Sci 430:438–447

    Article  CAS  Google Scholar 

  39. Zhang W, Liu F, Li Q, Shou Q, Cheng J, Zhang L, Nelson BJ, Zhang X (2012) Phys Chem Chem Phys 14(47):16331–16337

    Article  CAS  PubMed  Google Scholar 

  40. Oku M, Hirokawa K, Ikeda S (1975) J Electron Spectrosc 7:465473

    Article  Google Scholar 

  41. Li Y, Qu J, Gao F, Lv S, Lin S, He C, Sun J (2015) Appl Catal B 162:268–274

    Article  CAS  Google Scholar 

  42. Sun H, Bai Y, Cheng Y, Jin W, Xu N (2006) Ind Eng Chem Res 45(14):4971–4976

    Article  CAS  Google Scholar 

  43. Li W, Lei L, Zhao D (2016) Nature Rev Mater 1(6):16023

    Article  CAS  Google Scholar 

  44. Tan YH (2012) J Mater Chem 22(14):6733–6745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S (2009) J Power Sources 190:578–586

    Article  CAS  Google Scholar 

  46. Selvan R, Perelshtein I, Perkas N, Gedanken A (2008) J Phys Chem C 112(6):1825–1830

    Article  CAS  Google Scholar 

  47. He L, Zhang G, Dong Y, Zhang Z, Xue S, Jiang X (2014) Nano- Micro Lett 6:38–45

    Article  Google Scholar 

  48. Nagamuthu S, Vijayakumar S, Muralidharan G (2013) Energy and Fuels 27(6):3508–3515

    Article  CAS  Google Scholar 

  49. Wang Y, Li H, Xia Y (2006) Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  50. Du X, Guo P, Song H, Chen X (2010) Electrochim Acta 55(16):4812–4819

    Article  CAS  Google Scholar 

  51. Farma R, Deraman M, Awitdrus I, Talib I, Omar R, Manjunatha J, Ishak M, Basri N, Dolah B (2013) Int J Electrochem Sci 8:257–273

    CAS  Google Scholar 

  52. Jiang T, Chen H, Wan H, Miao L, Zhang L (2013) Electrochim Acta 114:674–680

    Article  CAS  Google Scholar 

  53. Farsi H, Gobal F, Barzgari Z (2013) Ionics 19(2):287–294

    Article  CAS  Google Scholar 

  54. Shah H et al (2016) Int J Electrochem Sci 11:8155–8162

    Article  CAS  Google Scholar 

  55. Shaik D, Rosaiah P, Hussain O (2016) Mater Proceed 3:64–73

    Google Scholar 

  56. Mei BA, Munteshari O, Lau J, Dunn B, Pilon L (2018) J Phys Chem C 122(1):194–206

    Article  CAS  Google Scholar 

  57. Choi W, Shin HC, Kim JM, Choi JY, Yoon WS (2020) J Electrochem Sci Technol 11(1):1–13

    Article  CAS  Google Scholar 

  58. Wang W, Yao W, Chen W, Chen D, Ma Z, Lu Z (2020) Appl Sci 10(6):1907. https://doi.org/10.3390/app10061907

    Article  CAS  Google Scholar 

  59. Bard AJ, Faulkner LR (2001) Electrochemical Methods, 2nd edn. Wiley, New Jersey, American

    Google Scholar 

  60. Lyu J et al (2019) ChemRxiv. https://doi.org/10.26434/chemrxiv.7637030.V1

  61. Shasha J, Tiehu L, Xiong C, Tang C, Dang A, Li H, Zhao T (2019) Nanomaterials 9:1338–1350

    Article  CAS  Google Scholar 

  62. Sun M, Tie J, Cheng G, Lin T, Peng S, Deng F, Ye F, Yu L (2015) Mater Chem A 3:1730–1736

    Article  CAS  Google Scholar 

  63. Mousa M, Khairy M, Shehab M (2017) J Solid State Electrochem 21(4):995–1000

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mousa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The Mn3O4/TiO2/reduced graphene oxide nanocomposite was synthesized using a hydrothermal method.

• Nanotube TiO2 and spherical Mn3O4 nanoparticles were well-dispersed on reduced graphene oxide.

• The Mn3O4/TiO2/rGO ternary nanocomposite electrode showed a much higher specific capacitance than its single individual constituents.

• An asymmetric supercapacitor (ASC) constructed using a Mn3O4–TiO2–rGO (MTrGO) as a positive electrode and G as a negative electrode works steadily under a potential window of 0–1.8 V providing a high-energy density of 31.95 Wh kg−1 at a power density of 7188 W kg−1 in 6 M KOH aqueous electrolyte.

• The ASC exhibits satisfactory cycle stability with 87% capacitance retention over 1000 cycles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shahat, M., Mochtar, M., Rashad, M.M. et al. Single and ternary nanocomposite electrodes of Mn3O4/TiO2/rGO for supercapacitors. J Solid State Electrochem 25, 803–819 (2021). https://doi.org/10.1007/s10008-020-04837-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04837-2

Keywords

Navigation