Skip to main content
Log in

Silver and yttrium-doped bismuth vanadate for photoluminescent activity and boosted visible light-induced photodegradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver and ytterbium-doped bismuth vanadate (AgxYbyBizxyVO4) composites have been synthesized via solid state-reaction in one-step at 950 °C for 6 h in the open air atmosphere. The effect of dopants concentration on the morphology, the optical property and the dye degradation efficiency was studied by X-ray Diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscope (SEM), photoluminescence (PL) spectroscopy and Fourier transform infrared (FTIR) and UV–Visible spectroscopy. The scanning electron microscopic analysis has revealed the presence of most irregular-shaped particles; however, some definite grain-like particles have also been seen. EDX analysis disclosed the presence of V, Bi, Ag, Yb and O in the doped materials. TGA has described the stability of doped materials at the ordinary temperature. Fourier transform infrared results of AgxYbyBizxyVO4 composites have indicated the formation of vanadium pentaoxide based materials and the presence of V–O bond. The calculated optical band gaps of V2O5 and composites have been recorded as 2.25, 1.56 and 1.75 eV, respectively. The Nyquist plot has demonstrated nearly straight lines for V2O5 and composites which is attributed to the higher charge transfer potential. The photoluminescence spectra of the doped materials have revealed the presence of spectral bands in the red and red to infrared regions which could be used in the optical devices. The degradation efficiency of crystal violet (CV) dye was explored under the solar-light irradiation. A remarkable dye degradation efficiency of 94.57% has been recorded for 7 mg/L of the dye solution within 120 min. Besides, the proposed dye degradation mechanism and reusability experiment was also discussed in detail. The photoluminescent study of the materials exhibited emission bands at 1088 and 1045 nm are recorded which could be used in optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Long, Q. Li, T. Wei, G. Zhang, Z. Rens, Historical development and prospects of photocatalysts for pollutant removal in water. J. Hazard. Mater. 395, 122599–122694 (2020)

    CAS  Google Scholar 

  2. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh et al., Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application. Eur. Polym. 76, 14–27 (2016)

    CAS  Google Scholar 

  3. K. Kanagamani, P. Muthukrishnan, K. Saravanakumar, K. Shankar, A. Kathiresans, Photocatalytic degradation of environmental perilous gentian violet dye using leucaena-mediated zinc oxide nanoparticle and its anticancer activity. Rare Met. 38(4), 277–286 (2019)

    CAS  Google Scholar 

  4. X. Bi, S. Yu, E. Liu et al., Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity. Colloids Surf. A. 603, 125193–125200 (2020)

    CAS  Google Scholar 

  5. A.S. Etman, H.N. Abdelhamid, Y. Yuan, L. Wang, X. Zou, J. Suns, Facile water-based strategy for synthesizing MoO3–x nanosheets: efficient visible light photocatalysts for dye degradation. ACS Omega 3(2), 2193–2201 (2018)

    CAS  Google Scholar 

  6. M. Rahmat, A. Rehman, S. Rahmat et al., Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J. Mater. Res. Technol. 8(6), 5149–5159 (2019)

    CAS  Google Scholar 

  7. P. Chand, V. Singh, D. Kumars, Rapid visible light-driven photocatalytic degradation using Ce-doped ZnO nanocatalysts. Vacuum 178, 109364–109376 (2020)

    Google Scholar 

  8. L.X. Nong, V.H. Nguyen, L.G. Bach et al., Crystal violet degradation over BiVO4 photocatalyst under visible light irradiation. Chem. Eng. Commun. 2019, 1–9 (2019)

    Google Scholar 

  9. M.R. Kulkarni, T. Revanth, A. Acharya, P. Bhats, Removal of crystal violet dye from aqueous solution using water hyacinth: equilibrium, kinetics and thermodynamics study. Resour.-Effic. Technol. 3, 71–77 (2017)

    Google Scholar 

  10. D. Kim, G. Kim, H. Bae et al., An external energy independent WO3/MoCl5 nano-sized catalyst for the superior degradation of crystal violet and rhodamine B dye. Catalysts 9(8), 642–657 (2019)

    CAS  Google Scholar 

  11. S.G. Nasab, A. Semnani, A. Teimouri, M.J. Yazd, T.M. Isfahani, S. Habibollahis, Decolorization of crystal violet from aqueous solutions by a novel adsorbent chitosan/nanodiopside using response surface methodology and artificial neural network-genetic algorithm. Int. J. Biol. Macromol. 124, 429–443 (2019)

    CAS  Google Scholar 

  12. M.M. Sajid, S.B. Khan, N.A. Shad, N. Amin, Z. Zhangs, Visible light assisted photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid using a BiVO 4/FeVO 4 heterojunction composite. RSC Adv. 8(42), 23489–23498 (2018)

    CAS  Google Scholar 

  13. C.-C. Chen, J. Shaya, H.-J. Fan, Y.-K. Chang, H.-T. Chi, C.-S. Lus, Silver vanadium oxide materials: controlled synthesis by hydrothermal method and efficient photocatalytic degradation of atrazine and CV dye. Sep. Purif. Technol. 206, 226–238 (2018)

    CAS  Google Scholar 

  14. L. Marciniak, K. Kniecs, Different strategies of stabilization of vanadium oxidation states in LaGaO3 nanocrystals. Front. Chem. 7, 1–8 (2019)

    Google Scholar 

  15. Q. Qu, Y. Zhu, X. Gao, Y. Wus, Core–shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2(8), 950–955 (2012)

    CAS  Google Scholar 

  16. G. Ravinder, C. Sreelatha, V. Ganesh, M. Shkir, M. Anis, P.C. Raos, Thickness-dependent structural, spectral, linear, nonlinear and z-scan optical studies of V2O5 thin films prepared by a low-cost sol-gel spin coating technique. Mater. Res. Express 6(9), 096403–096415 (2019)

    CAS  Google Scholar 

  17. A. Legrouri, T. Baird, J. Fryers, Electron optical studies of fresh and reduced vanadium pentoxide-supported rhodium catalysts. J. Catal. 140(1), 173–183 (1993)

    CAS  Google Scholar 

  18. N.A. Chernova, M. Roppolo, A.C. Dillon, M.S. Whittinghams, Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chem. A 19(17), 2526–2552 (2009)

    CAS  Google Scholar 

  19. T.K. Le, M. Kang, S.W. Kims, Room-temperature photoluminescence behavior of α-V2O5 and mixed α-β phase V2O5 films grown by electrodeposition. Mater. Sci. Semicond. Process. 94, 15–21 (2019)

    CAS  Google Scholar 

  20. M. Shanmugam, A. Alsalme, A. Alghamdi, R. Jayavels, Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight. ACS Appl. Mater. Interfaces 7(27), 14905–14911 (2015)

    CAS  Google Scholar 

  21. M.S. Raman, J. Chandrasekaran, R. Priya, M. Chavali, R. Sureshs, Effect of post-growth annealing on the structural, optical and electrical properties of V2O5 nanorods and its fabrication, characterization of V2O5/p-Si junction diode. Mater. Sci. Semicond. Process. 41, 497–507 (2016)

    Google Scholar 

  22. N. Kaur, S. Gupta, N. Goels, Understanding structure-activity relation in V x O y clusters of varied stoichiometry and sizes through conceptual density functional approach. J. Mol. Model. 25(11), 319 (2019)

    Google Scholar 

  23. T. Kharlamova, K.K. Urazov, O. Vodyankinas, Effect of modification of supported V 2 O 5/SiO 2 catalysts by lanthanum on the state and structural peculiarities of vanadium. Kinet. Catal. 60(4), 465–473 (2019)

    CAS  Google Scholar 

  24. X. Liu, J. Zeng, H. Yang, K. Zhou, D. Pans, V2O5-based nanomaterials: synthesis and their applications. RSC Adv. 8(8), 4014–4031 (2018)

    CAS  Google Scholar 

  25. K.Y. Yasoda, A.A. Mikhaylov, A.G. Medvedev et al., Brush like polyaniline on vanadium oxide decorated reduced graphene oxide: efficient electrode materials for supercapacitor. J. Energy Storage 22, 188–193 (2019)

    Google Scholar 

  26. R.K. Mandal, S. Kundu, S. Sain, S.K. Pradhans, Enhanced photocatalytic performance of V 2 O 5–TiO 2 nanocomposites synthesized by mechanical alloying with morphological hierarchy. New J. Chem. 43(6), 2804–2816 (2019)

    CAS  Google Scholar 

  27. G. Navyashree, K. Hareesh, D. Sunitha, H. Nagabhushana, G. Nagarajus, Photocatalytic degradation performance of Nd3+ doped V2O5 nanostructures. Mater. Res. Express. 5(9), 095007–095032 (2018)

    Google Scholar 

  28. Z.N. Kayani, H. Bashir, S. Riaz, S. Naseems, Optical properties and antibacterial activity of V doped ZnO used in solar cells and biomedical applications. Mater. Res. Bull. 115, 121–129 (2019)

    CAS  Google Scholar 

  29. A.A. Mikhaylov, A.G. Medvedev, D.A. Grishanov et al., Vanadium oxide thin film formation on graphene oxide by microexplosive decomposition of ammonium peroxovanadate and its application as a sodium ion battery anode. Langmuir 34(8), 2741–2747 (2018)

    CAS  Google Scholar 

  30. B. Lan, Z. Peng, L. Chen et al., Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries. J. Alloys Compd. 787, 9–16 (2019)

    CAS  Google Scholar 

  31. R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasaris, Utilizing of neodymium vanadate nanoparticles as an efficient catalyst to boost the photocatalytic water purification. J. Environ. Manag. 230, 266–281 (2019)

    CAS  Google Scholar 

  32. I.E. Wachss, Catalysis science of supported vanadium oxide catalysts. Dalton Trans. 42(33), 11762–11769 (2013)

    Google Scholar 

  33. J. Lee, S. Badie, P. Srimuk et al., Electrodeposition of hydrated vanadium pentoxide on nanoporous carbon cloth for hybrid energy storage. Sustain. Energy Fuels 2(3), 577–588 (2018)

    CAS  Google Scholar 

  34. S. Dou, W. Zhang, Y. Wang et al., The influence of temperature on preparing tungsten doped vanadium dioxide films by sol-gel method. Mater. Res. Express 6(1), 016408–016425 (2018)

    Google Scholar 

  35. M. Rams, Frequency and temperature-dependent electrical properties of LiNi3/5Fe2/5VO4 studied by complex impedance spectroscopy. Mater. Chem. Phys. 73(1), 25–29 (2012)

    Google Scholar 

  36. M. Qin, H. Wu, Z. Cao, D. Zhang, B. Jia, X. Qus, A novel method to synthesize vanadium nitride nanopowders by ammonia reduction from combustion precursors. J. Alloys Compd. 772, 808–813 (2019)

    CAS  Google Scholar 

  37. T.M. Smith Pellizzeri, C.D. McMillen, Y. Wen, G. Chumanov, J.W. Koliss, Three unique barium manganese vanadates from high-temperature hydrothermal brines. Inorg. Chem. Commun. 56(7), 4206–4216 (2017)

    CAS  Google Scholar 

  38. O. Chukova, S. Nedilko, A. Slepets, S. Nedilko, T. Voitenkos, Synthesis and properties of the La 1–x− y Eu y Ca x VO 4 (0≤ x, y≤ 0.2) compounds. Nanoscale Res. Lett. 12(1), 1–11 (2017)

    CAS  Google Scholar 

  39. S.S. Imam, Z.U. Zango, H. Abdullahis, Room temperature synthesis of bismuth oxyiodide with different morphologies for the photocatalytic degradation of norfloxacin. Am. Sci. Res. J. Eng. Technol. Sci. 41(1), 26–39 (2018)

    Google Scholar 

  40. H. Albaris, G. Karuppasamys, Fabrication of room temperature liquid petroleum gas sensor based on PAni–CNT–V 2 O 5 hybrid nanocomposite. Appl. Nanosci. 9(8), 1719–1729 (2019)

    CAS  Google Scholar 

  41. P. Aldebert, N. Baffier, N. Gharbi, J. Livages, Layered structure of vanadium pentoxide gels. Mater. Res. Bull. 16(6), 669–676 (1981)

    CAS  Google Scholar 

  42. T.K. Le, M. Kang, S.W. Kims, Relation of photoluminescence and sunlight photocatalytic activities of pure V2O5 nanohollows and V2O5/RGO nanocomposites. Mater. Sci. Semicond. Process. 100, 159–166 (2019)

    CAS  Google Scholar 

  43. P. Srilakshmi, A. Maheswari, V. Sajeev, M. Sivakumars, Tuning the optical bandgap of V2O5 nanoparticles by doping transition metal ions. Mater. Today 18, 1375–1379 (2019)

    CAS  Google Scholar 

  44. Y.-J. Liang, F. Liu, Y.-F. Chen, X.-J. Wang, K.-N. Sun, Z. Pans, New function of the Yb 3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light Sci. Appl. 5(7), 16124–16130 (2016)

    Google Scholar 

  45. M.M. Sajid, N.A. Shad, Y. Javed et al., Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf. Interfaces 19, 100502–100511 (2020)

    CAS  Google Scholar 

  46. S.D. Abraham, S.T. David, R.B. Bennie, C. Joel, D.S. Kumars, Eco-friendly and green synthesis of BiVO4 nanoparticle using microwave irradiation as photocatalayst for the degradation of Alizarin Red S. J. Mol. Struct. 1113, 174–181 (2016)

    CAS  Google Scholar 

  47. S. Sampurnam, T. Dhanasekaran, S. Muthamizh et al., Synthesis, Characterization, and photocatalytic activity of silver nanoparticledoped phosphomolybdic acid supportedZirconia. Mater. Today 14, 558–562 (2019)

    CAS  Google Scholar 

  48. M. Hajizadeh-Oghaz, R.S. Razavi, M. Barekat, M. Naderi, S. Malekzadeh, M. Rezazadehs, Synthesis and characterization of Y 2 O 3 nanoparticles by sol–gel process for transparent ceramics applications. J. Sol-Gel Sci. Technol. 78(3), 682–691 (2016)

    CAS  Google Scholar 

  49. N.K. Nasab, Z. Sabouri, S. Ghazal, M. Darroudis, Green-based synthesis of mixed-phase silver nanoparticles as an effective photocatalyst and investigation of their antibacterial properties. J. Mol. Struct. 1203, 127411–127420 (2020)

    Google Scholar 

  50. P.K. Boruah, S. Szunerits, R. Boukherroub, M.R. Dass, Magnetic Fe3O4@ V2O5/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation. Chemosphere 191, 503–513 (2018)

    CAS  Google Scholar 

  51. L. Fan, C. Luo, X. Li, F. Lu, H. Qiu, M. Suns, Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. 215, 272–279 (2012)

    Google Scholar 

  52. J.Y. Lee, J.-H. Chois, Sonochemical synthesis of Ce-doped TiO2 nanostructure: a visible-light-driven photocatalyst for degradation of toluene and O-xylene. Materials 12(8), 1265–1279 (2019)

    CAS  Google Scholar 

  53. H. Lahmar, M. Benamira, S. Douafer et al., Photocatalytic degradation of Crystal Violet dye on the novel CuCr2O4/SnO2 hetero-system under sunlight. Optik 129, 165042–165059 (2020)

    Google Scholar 

  54. H. Abbas, R.A. Nasr, R. Abu-Zurayk, A Al Bawab, TS Jamils, Decolourization of crystal violet using nano-sized novel fluorite structure Ga2Zr2− x W x O7 photocatalyst under visible light irradiation. R. Soc. Open Sci. 7(3), 191632–191651 (2020)

    CAS  Google Scholar 

  55. S.B. Ameur, H. BelHadjltaief, B. Duponchel et al., Enhanced photocatalytic activity against crystal violet dye of Co and In doped ZnO thin films grown on PEI flexible substrate under UV and sunlight irradiations. Heliyon 5(6), 1912–1919 (2019)

    Google Scholar 

  56. M. Zahoor, A. Arshad, Y. Khan et al., Enhanced photocatalytic performance of CeO 2–TiO 2 nanocomposite for degradation of crystal violet dye and industrial waste effluent. Appl. Nanosci. 8(5), 1091–1099 (2018)

    CAS  Google Scholar 

  57. S. Mohanty, S. Moulick, S.K. Majis, Adsorption/photodegradation of crystal violet (basic dye) from aqueous solution by hydrothermally synthesized titanate nanotube (TNT). J. Water Process Eng. 3(7), 101428–101438 (2020)

    Google Scholar 

  58. A.M. Campos, P.F. Riaño, D.L. Lugo et al., Degradation of crystal violet by Catalytic Wet Peroxide Oxidation (CWPO) with mixed Mn/Cu oxides. Catalysts 9(6), 530–544 (2019)

    CAS  Google Scholar 

  59. H. Abbas, R.A. Nasr, A. Khalaf, A. Al Bawab, T.S. Jamils, Photocatalytic degradation of methylene blue dye by fluorite type Fe2Zr2-xWxO7 system under visible light irradiation. Ecotoxicol. Environ. Saf. 196, 110518–110528 (2020)

    CAS  Google Scholar 

  60. W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, L.C. Sims, An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 27, 1–44 (2019)

    Google Scholar 

  61. L. Lin, Q. Xie, M. Zhang et al., Construction of Z-scheme Ag-AgBr/BiVO4/graphene aerogel with enhanced photocatalytic degradation and antibacterial activities. Colloids Surf. A Physicochem. Eng. 601, 124978–124988 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Materials Chemistry laboratory of the Islamia University of Bahawalpur, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz ur Rehman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, O.P., Ashiq, M.N., Ahmad, M. et al. Silver and yttrium-doped bismuth vanadate for photoluminescent activity and boosted visible light-induced photodegradation. J Mater Sci: Mater Electron 31, 21082–21096 (2020). https://doi.org/10.1007/s10854-020-04620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04620-z

Navigation