Skip to main content

Advertisement

Log in

Crystal structure, optical and electrochemical studies of mixed metal oxide nanoparticles and their application in photodegradation of methylene blue

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Silver-doped manganese copper oxide nanoparticles (Ag-doped MnCuO NPs) were synthesized by a simultaneous green chemistry reduction approach using Bambusa seed extract. Aqueous extract from the seed was used as a reducing and capping agent. The X-ray diffraction analysis revealed that the NPs appear crystalline, and the detailed crystal structure was investigated. The average crystallite size of NPs was found to be 26.85 nm. Fourier transform infrared analysis confirmed the presence of functional groups present in NPs. The energy gap, Eg of NPs, was 1.75 eV from the UV-DRS. SEM micrographs showed an orthorhombic structure and some agglomeration-shaped NPs. Simple EDX mapping reveals the presence of Ag, Mn, Cu, C and O. Further, the prepared composites were tested for their electrochemical properties. The modified electrode was investigated by cyclic voltammetry. The specific capacitance of the synthesized Ag-doped MnCuO-nanostructured electrodes has been calculated from the cyclic voltammetry curve and the value is found for different scan rates (10–500 mV s–1). The photocatalytic activity of methylene blue (MB), a hazardous dye, was increased by 98.62% after 60 min of exposure to solar light radiation using an Ag-doped MnCuO catalyst (0.05 g) at pH = 9. The correlation coefficient value of MB’s pseudo-first-order kinetic model of photocatalytic degradation is high (R2 > 0.95). It was found that Ag-doped MnCuO NPs have higher photocatalytic efficiency and can be used as potential photocatalysts for industrial dye degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Di Paola A, García-López E, Marcì G and Palmisano L 2012 J. Hazard. Mater. 3 211

    Google Scholar 

  2. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C and Herrmann J A 2001 Appl. Catal. B Environ. 31 145

    Article  CAS  Google Scholar 

  3. Alkaykh S, Mbarek A and Ali-Shattle E E 2020 Heliyon 6 03663

    Article  Google Scholar 

  4. Zhang Z, Wu Q, Johnson G, Ye Y, Li X, Zhao S et al 2019 J. Am. Chem. Soc. 141 16548

    Article  CAS  Google Scholar 

  5. Wang Q, Hisatomi T, Ma S S K, Li Y and Domen K 2014 Chem. Mater. 26 4144

    Article  CAS  Google Scholar 

  6. Cai F, Meng Y, Hu B, Tang Y and Shi W 2015 RSC Adv. 5 57354

    Article  CAS  Google Scholar 

  7. Zhang P, Yu Y, Wang E, Wang J, Yao J and Cao Y 2014 ACS Appl. Mater. Interfaces 6 4622

    Article  CAS  Google Scholar 

  8. Ashebir M E, Tesfamariam G M, Nigussie G Y and Gebreab T W 2018 J. Nanomater. 2018 Article ID 9425938

  9. Medhi R, Marquez M D and Lee T R 2020 ACS Appl. Nano Mater. 3 6156

    Article  CAS  Google Scholar 

  10. Appavu B, Thiripuranthagan S, Ranganathan S, Erusappan E and Kannan K 2018 Ecotoxicol. Environ. Saf. 151 118

    Article  CAS  Google Scholar 

  11. Cheng M, Zeng G, Huang D, Lai C, Xu P and Zhang C 2016 Chem. Eng. J. 284 582

    Article  CAS  Google Scholar 

  12. Chatterjee D and Dasgupta S 2005 J. Photochem. Rev. 6 186

    Article  CAS  Google Scholar 

  13. Nissren T, Muhammad A, Warda H, Syeda Rabia E, ZainabMohsen N and Ibrahim A A 2022 Ceram. Int. 48 29589

    Article  Google Scholar 

  14. Parvathiraja C and Shailajha S 2021 Appl. Nanosci. 11 1411

    Article  CAS  Google Scholar 

  15. Haojie Z, Chao L, Ting H, Fuping D, Yonghui Z, Xiaopeng L et al 2016 ACS Sustain. Chem. 4 6277

    Article  Google Scholar 

  16. Zhang X, Zhou G, Zhang H, Wu C and Song H 2011 Transit. Metal Chem. 36 217

    Article  CAS  Google Scholar 

  17. Vasanth Kumar K, Porkodi K and Selvaganapathi A 2007 Dyes Pigm. 75 246

    Article  Google Scholar 

  18. Dhanalakshmi A, Natarajan B, Ramadas V, Palanimurugan A and Thanikaikarasan S 2016 Pramana 8 7

    Google Scholar 

  19. Thaweesaeng N, Supankit S, Techidheera W and Pecharapa W 2013 Energy Procedia 34 682

    Article  CAS  Google Scholar 

  20. Barzinjy A A and Azeez H H 2020 SN Appl. Sci. 2 991

    Article  CAS  Google Scholar 

  21. Sajjad M, Ali K, Javed Y, Sattar A, Akbar L, Nawaz A et al 2020 J. Mater. Sci. 31 21779

    CAS  Google Scholar 

  22. Jacob R, Nair H G and Isac J 2015 Int. Lett. Chem. Phys. Astron. 41 100

    Article  Google Scholar 

  23. Nagarani N and Vasu V 2013 J. Photonics Spintron. 2 19

    Google Scholar 

  24. Chauhan J, Shrivastav N, Dugaya A and Pandey D 2017 Nanotechnology l8 1

    Google Scholar 

  25. Ullah Z, Atiq S and Naseem S 2013 J. Sci. Res. 5 235

    Article  CAS  Google Scholar 

  26. Nath B and Barbhuiya T F 2022 J. Chem. Pharm. Res. 6 608

    Google Scholar 

  27. Chopade S, Kore I, Patil S, Jadhav N D, Srinidhi C and Desai P A 2018 Ceram. Int. 44 5621

    Article  CAS  Google Scholar 

  28. Albert Manoharan A, Chandramohan R, David Prabu R, Valanarasu S, Ganesh V, Kathalingam A et al 2018 J. Mol. Struct. 1171 388

    Article  CAS  Google Scholar 

  29. Javed M, Raheel M, Iqbal S, Bahadur A, Azam Qamar M and Ahmad M 2020 J. Mater. Sci. 31 8423

    Google Scholar 

  30. Souri M, Hoseinpour V, Shakeri A and Ghaemi N 2018 Wiley Online Library 12 822

    Google Scholar 

  31. Khan S, Shahid S, Shahid B, Fatima U and Akber Abbasi S 2020 Biomolecules 10 785

    Article  CAS  Google Scholar 

  32. Krishnaraj C, Ji B J, Harper S L and Yun S I 2016 Bioprocess. Biosyst. Eng. 39 759

    Article  CAS  Google Scholar 

  33. Merugu R, Gothalwa R, Kaushik Deshpande P, De Mandal S, Padala G and Latha Chitturi K 2021 Mater. Today Proc. 44 99

    Article  CAS  Google Scholar 

  34. Kundu V S, Dhiman R L, Preeti P and Singh D 2018 AIP Conf. Proc. 030044

  35. Viruthagiri G and Kannan P 2019 J. Mater. Res. Technol. 8 127

    Article  CAS  Google Scholar 

  36. He H Y, Dong W X and Zhang G H 2010 Chem. Intermed. 36 995

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to the Department of Chemistry at V.O. Chidambaram College for providing FT-IR, UV and electrochemical work station. We are thankful to Avinashilingam University, Coimbatore, for providing FESEM. The authors are gratitude to the administration of V.O. Chidambaram College for giving an opportunity to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Arul Vathana.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vathana, S.A., Daniel, T. & Amudhavalli, K. Crystal structure, optical and electrochemical studies of mixed metal oxide nanoparticles and their application in photodegradation of methylene blue. Bull Mater Sci 46, 109 (2023). https://doi.org/10.1007/s12034-023-02953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02953-z

Keywords

Navigation