Skip to main content
Log in

Improving charge separation, photocurrent and photocatalytic activities of Dy-doped TiO2 by surface modification with salicylic acid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Salicylic acid-modified Dy-TiO2 (Dy-TiO2/SA), novel visible light-sensitive material was synthesized via a sol–gel followed by impregnation method. Salicylic acid (SA) molecules are mixed with the TiO2 and Dy-TiO2 samples in hexane which promotes their direct adsorption. SA-modified TiO2 particles (TiO2/SA and Dy-TiO2/SA) were finally obtained after drying at 120 °C. FTIR spectroscopy shows the formation of a fairly stable complex between Ti4+ surface ions and salicylic acid. In Dy-TiO2/SA complex, a ligand-to-metal charge transfer (LMCT) is active giving light absorption in the visible region (500–600 nm) indicating a bandgap of ~ 2.24 eV, lower than unmodified TiO2 samples. Electron paramagnetic resonance (EPR) and photoluminescence analyses demonstrate that LMCT process stabilizes the defect states within TiO2 bandgap, suppressing the electron–hole recombination process. The charge separation of SA-modified TiO2 complexes was evaluated through the photocurrent and the photocatalytic performances of Dy-TiO2/SA under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Kralova, I. Levchuk, V. Kasparek, M. Sillanpaa, J. Cihlar, Influence of synthesis conditions on physical properties of lanthanide-doped titania for photocatalytic decomposition of metazachlor. Chin. J. Catal. 36, 1679–1685 (2015)

    CAS  Google Scholar 

  2. M.K. Patil, S.D. Delekar, R.P. Barkul, F.A. Shaikh, Visible Light Active Ce-doped TiO2 Nanoparticles for Photocatalytic Degradation of Methylene Blue. Curr. Nanosci. 13, 1–1 (2017)

    Google Scholar 

  3. Y. Ding, I.S. Yang, Z. Li, X. Xia, W.I. Lee, S. Dai, D.W. Bahenmann, J.H. Pan, Nanoporous TiO2 spheres with tailored textural properties: controllable synthesis, formation mechanism, and photochemical applications. Prog. Mater. Sci. 109, 100620 (2020)

    CAS  Google Scholar 

  4. J.Y. Lee, J.H. Cho, Sonochemical synthesis of Ce-doped TiO2nanostructure: a visible-light-driven photocatalyst for degradation of toluene and O-xylene. Materials (Basel) 12, 1265 (2019)

    CAS  Google Scholar 

  5. S. Dongfeng, W. Kai, X. Zhijian, L. Ruixing, Synthesis and photocatalytic activity of sulfate modified Nd-doped TiO2 under visible light irradiation. J. Rare Earth 33, 491–497 (2015)

    Google Scholar 

  6. C. Wang, T. Zeng, S. Zhu, C. Gu, Synergistic mechanism of rare-earth modification TiO2 and photodegradation on benzohydroxamic acid. Appl. Sci. 9, 339 (2019)

    Google Scholar 

  7. M.B. Chobba, M. Messaoud, M.L. Weththimuni, J. Bouaziz, M. Licchelli, F.D. Leo, C. Urzì, Preparation and characterization of photocatalytic Gd-doped TiO2 nanoparticles for water treatment. Environ. Sci. Pollut. Res. 26, 32734–32745 (2019)

    Google Scholar 

  8. A. Jraba, Z. Anna, E. Elaloui, Physicochemical properties of La3+-doped TiO2 monolith prepared by sol–gel approach: application to adsorption and solar photodegradation of ibuprofen. J. Mater. Sci. Mater. Electron. 31, 1072–1083 (2020)

    CAS  Google Scholar 

  9. Z. Wang, Y. Song, X. Cai, J. Zhang, T. Tang, S. Wen, Rapid preparation of terbium-doped titanium dioxide nanoparticles and their enhanced photocatalytic performance. R. Soc. Open Sci. 6, 191077 (2019)

    CAS  Google Scholar 

  10. Z. Rao, X. Xie, X. Wang, A. Mahmood, S. Tong, M. Ge, J. Sun, Defect chemistry of Er3+-Doped TiO2 and its photocatalytic activity for the degradation of flowing gas-phase VOCs. J. Phys. Chem. C 123, 12321–12334 (2019)

    CAS  Google Scholar 

  11. Y. Huang, J.J. Cao, F. Kang, S.J. You, C.W. Chang, Y.F. Wang, High selectivity of visible-light-driven La-doped TiO2 photocatalysts for NO removal. Aerosol. Air Qual. Res. 17, 2555–2565 (2017)

    CAS  Google Scholar 

  12. H. Park, H.I. Kim, G.H. Moon, W. Choi, Photoinduced charge transfer processes in solar photocatalys is based on modified TiO2. Energy Environ. Sci. 9, 411–433 (2016)

    CAS  Google Scholar 

  13. X. Li, H. Xu, J.L. Shi, H.M. Hao, H. Yuan, X.J. Lang, Salicylic acid complexed with TiO2 for visible light-driven selective oxidation of amines into imines with air. Appl. Catal. B: Environ. 244, 758–766 (2019)

    CAS  Google Scholar 

  14. J.L. Shi, H. Hao, X. Lang, Phenol–TiO2 complex photocatalysis: visible lightdriven selective oxidation of amines into imines in air. Sustain. Ener. Fuels. 3, 488–498 (2019)

    CAS  Google Scholar 

  15. M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 4, 1600152 (2017)

    Google Scholar 

  16. S. Varaganti, G. Ramakrishna, Dynamics of interfacial charge transfer emission in small molecule sensitized TiO2 nanoparticles: is it localized or delocalized? J. Phys. Chem. C 114, 13917–13925 (2010)

    CAS  Google Scholar 

  17. G. Luciani, C. Imparato, G. Vitiello, Photosensitive hybrid nanostructured materials: the big challenges for sunlight capture. Catalysts 10, 103 (2020)

    CAS  Google Scholar 

  18. H. Park, H. Kim, G. Moon, W. Choi, Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 9, 411–433 (2016)

    CAS  Google Scholar 

  19. L. Qu, D. Huang, H. Shi, M. Gu, J. Li, F. Dong, Z. Luo, TiO2/carboxylate-rich porous carbon: a highly efficient visible-light-driven photocatalyst based on the ligand-to-metal charge transfer (LMCT) process. J. Phys. Chem. Solids 85, 173–179 (2015)

    CAS  Google Scholar 

  20. M. Sboui, M.F. Nsib, A. Rayes, T. Ochiai, A. Houas, Application of solar light for photocatalytic degradation of Congo red by a floating salicylic acid-modified TiO2/palm trunk photocatalyst. C. R. Chim. 20, 181–1899 (2017)

    CAS  Google Scholar 

  21. K. Elghniji, C. Virlan, E. Elaloui, A. Pui, Synthesis, characterization of SiO2 supportedindustrial phosphoric acid catalyst for hydrolysis of NaBH4 solution. Phosphorus Sulfur Relat. Elem. 193, 806–821 (2018)

    CAS  Google Scholar 

  22. N. Nithyaa, N.V. Jaya, Structural, Structural, optical, and magnetic properties of Gd doped TiO2 nanoparticles. J. Supercond. Nov. Magn. 31, 4117–4412 (2018)

    CAS  Google Scholar 

  23. Z. Jian, Y. Pu, J. Fang, Z. Ye, Microemulsion synthesis of nanosized TiO(2) particles doping with rare-earth and their photocatalytic activity. Photochem. Photobiol. 86, 1016–1021 (2010)

    CAS  Google Scholar 

  24. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, G. Puchkovska, V. Naumov, T. Khalyavka, V. Kshnyakin, V. Chernyak, J. Barane, Optical and photocatalytic properties of titanium–manganese mixed oxides. Mater. Sci. Eng. B. 175, 48–55 (2010)

    CAS  Google Scholar 

  25. H.S. Chen, R.V. Kumar, Sol–gel TiO2 in self-organization process: growth, ripening and sintering. RSC Adv. 2, 2294–2301 (2012)

    CAS  Google Scholar 

  26. M.K. Trivedi, A. Branton, D. Trivedi, H. Shettigar, K. Bairwa, S. Jana, Fourier transform infrared and ultraviolet-visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin. Nat. Prod. Res. 3, 5 (2015)

    Google Scholar 

  27. K. Elghniji, E. Elaloui, Y. Moussaoui, Coating of anatase titania on clinoptilolite by metal organic chemical vapor deposition method: enhanced mesoporosity and photocatalytic activity. Chem. Pap. 72, 1159–1168 (2018)

    CAS  Google Scholar 

  28. E. Asadollahi, A.A. Youzbashi, M. Keyanpour-Rad, Synthesis and optical properties investigation of highly dispersed TiO2 nanoparticles surface modified with a quinoline derivative. J. Mater. Sci. Mater. Electron. 28, 11987–11993 (2017)

    CAS  Google Scholar 

  29. Y.S.M. Alajerami, S. Hashim, W.M.S. WanHassan, A.T. Ramli, Optical properties of lithium magnesium borate glasses doped with Dy3+ and Sm3+ ions. Phys. B. 407, 2398–2403 (2012)

    CAS  Google Scholar 

  30. G. Kaur, S.B. Rai, Cool white light emission in dysprosium and salicylic acid doped polyvinyl alcohol film under UV excitation. J. Fluoresc. 22, 475–483 (2012)

    CAS  Google Scholar 

  31. J. Park, G.H. Moon, K.O. Shin, J. Kim, Oxalate-TiO2 complex-mediated oxidation of pharmaceutical pollutants through ligand-to-metal charge transfer under visible light. Chem. Eng. J. 343, 689–698 (2018)

    CAS  Google Scholar 

  32. J. Moser, S. Punchihewa, P.P. Infelta, M. Gratzel, Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir 7, 3012–3018 (1991)

    CAS  Google Scholar 

  33. A. Sarkar, G.G. Khan, The Formation and detection techniques of oxygen vacancies in titanium oxide-based nano-structures. Nanoscale 11, 3414–3444 (2019)

    CAS  Google Scholar 

  34. V. Kumaravel, S. Rhatigan, S. Mathew, M.C. Michel, J. Bartlett, M. Nolan, S.J. Hinder, A. Gascó, C. Ruiz-Palomar, D. Hermosilla, S.C. Pillai, Mo doped TiO2: impact on oxygen vacancies, anatase phase stability and photocatalytic activity. J. Phys. Mater. 3, 025008 (2020)

    CAS  Google Scholar 

  35. J. Singh, K. Sahu, R. Singh, T. Som, R.K. Kotnala, S. Mohapatra, Thermal annealing induced strong photoluminescence enhancement in Ag-TiO2 plasmonic nanocomposite thin film. J. Alloys Compd. 786, 750–757 (2019)

    CAS  Google Scholar 

  36. B. Choudhury, S. Bayan, A. Choudhury, P. Chakraborty, Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity. J. Colloid Interface Sci. 465, 1–10 (2016)

    CAS  Google Scholar 

  37. S. Divya, V.P.N. Nampoori, P. Radhakrishnan, A. Mujeeb, Intermediate Ce3+ defect level induced photoluminescence and third-order nonlinear optical effects in TiO2–CeO2 nanocomposites. Appl. Phys. 114, 315–321 (2014)

    CAS  Google Scholar 

  38. J. Dhanalakshmi, S. Iyyapushpam, S.T. Nishanthi, M. Malligavathy, D.P. Padiyan, Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 015015 (2017)

    Google Scholar 

  39. C.O. Amor, K. Elghniji, C. Virlan, A. Pui, E. Elaloui, Effect of dysprosium ion (Dy3+) doping on morphological, crystal growth and optical properties of TiO2 particles and thin films. Phys. B 560, 67–74 (2019)

    CAS  Google Scholar 

  40. G. Ramakrishna, H.N. Ghosh, Emission from the charge transfer state of xanthene dye-sensitized TiO2 nanoparticles: a new approach to determining back electron transfer rate and verifying the Marcus inverted regime. J. Phys. Chem. B. 105, 7000–7008 (2001)

    CAS  Google Scholar 

  41. M. Hilgendorff, V. Sundstrom, Dynamics of electron injection and recombination of dye-sensitized TiO2 particles. J. Phys. Chem. B 102, 10505–10514 (1998)

    CAS  Google Scholar 

  42. T. Rajh, L.X. Chen, K. Lukas, T. Liu, M.C. Thurnauer, D.M. Tiede, Surface restructuring of nanoparticles: an efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B. 106, 10543–10552 (2002)

    CAS  Google Scholar 

  43. D.F. Shapiro, S.H. Petrosko, N.M. Dimitrijevic, D. Gosztola, K.A. Gray, T. Rajh, P. Tarakeshwar, V. Mujica, CO2 preactivation in Photoinduced Reduction Via Surface Functionalization of TiO2 nanoparticles. Phys. Chem. Lett. 4, 475–479 (2013)

    Google Scholar 

  44. F. Sannino, P. Pernice, C. Imparato, A. Aronne, G. D’Errico, L. Minieri, M. Perfetti, D. Pirozzi, Hybrid TiO2-acetylacetonate amorphous gel-derived material with stably adsorbed superoxide radical active in oxidative degradation of organic pollutants. RSC Adv. 5, 93831–93839 (2015)

    CAS  Google Scholar 

  45. S. Weng, J. Hu, M. Lu, X. Ye, Z. Pei, M. Huang, L. Xie, S. Lin, P. Liu, In situ photogenerated defects on surface-complex BiOCl(010) with high visible-light photocatalytic activity: a probe to disclose the charge transfer in BiOCl(010)/surface-complex system. Appl. Catal. B Environ. 163, 205–213 (2015)

    CAS  Google Scholar 

  46. N. Nithyaa, G. Bhoopathia, G. Magesha, C.D.N. Kumar, Neodymium doped TiO2 nanoparticles by sol–gel method for antibacterial and photocatalytic activity. Mat. Sci. Semicond. Proc. 83, 70–82 (2018)

    Google Scholar 

  47. K. Qi, R. Selvaraj, T. Al-Fahdi, S. Al-Kindy, Y. Kimc, G.C. Wang, C.W. Taie, M. Sillanpää, Enhanced photocatalytic activity of anatase-TiO2 nanoparticles by fullerene modification: a theoretical and experimental study. Appl. Surf. Sci. 387, 705–738 (2016)

    Google Scholar 

  48. A.S. Weber, A.M. Grady, R.T. Koodali, Lanthanide modified semiconductor photocatalysts. Catal. Sci. Technol. 2, 683–693 (2012)

    CAS  Google Scholar 

  49. F. Chen, W. Zou, W. Qu, J. Zhang, Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process. Catal. Commun. 10, 1510–1513 (2009)

    CAS  Google Scholar 

  50. L. Mino, A. Zecchina, G. Martra, A.M. Rossi, G. Spoto, A surface science approach to TiO2P25 photocatalysis: an in situ FTIR study of phenol photodegradation at controlled water coverages from sub-monolayer to multilayer. Appl. Catal. B Environ. 196, 135–141 (2016)

    CAS  Google Scholar 

  51. S.G. Ullattil, P. Periyat, Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO2 solar photocatalyst using Mn (II) as ‘anatase phase purifier.’ Nanoscale 7, 19184–19192 (2015)

    CAS  Google Scholar 

  52. T. Paul, P.L. Miller, T.J. Strathmann, Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environ. Sci. Technol. 41, 4720–4727 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kais Elghniji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouled Amor, C., Elghniji, K. & Elaloui, E. Improving charge separation, photocurrent and photocatalytic activities of Dy-doped TiO2 by surface modification with salicylic acid. J Mater Sci: Mater Electron 31, 20919–20931 (2020). https://doi.org/10.1007/s10854-020-04606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04606-x

Navigation