Skip to main content
Log in

Electromechanical performance of polydimethylsiloxane containing reduced graphene oxide grafted by long-chain alkyl silane

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study investigates the effects of grafting a long-chain organosilane (OS) onto the reduced graphene oxide (rGO) on dielectric and electromechanical performance of polydimethylsiloxane (PDMS). Accordingly, two types of OS-rGO particles were synthesized with different grafting densities and characterized by various tests such as Fourier transform infrared spectroscopy, Raman spectroscopy, and thermo-gravimetric analyses. As-prepared particles were introduced into PDMS using the solution mixing method to manufacture composites with different concentrations of particles. Dielectric results revealed that the composites containing OS-rGO particles offer better dielectric performance in terms of higher “dielectric efficiency” and dielectric breakdown strength than composites containing rGO or neat PDMS. The higher the grafting density of OS, the better the dielectric and electromechanical performance is obtained. By examining the electrical conductivity of particles, it was discussed that the spacer length of silane creates a space-filling insulating layer around the conductive rGO particles, traps free electric charges at the particle-polymer interface, postpones the electrical percolation threshold to higher concentrations, and reduces the dielectric loss through suppressing the leakage current of charges in the composite. Actuation strain of PDMS containing 3 wt% of OS-rGO with high grafting density was almost twice that for the neat PDMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Bar-Cohen, I.A. Anderson, Mech. Soft Mater. 1, 5 (2019)

    Article  Google Scholar 

  2. A. O’Halloran, F. O’malley, P. McHugh, J. Appl. Phys. 104, 9 (2008)

    Article  Google Scholar 

  3. F. Carpi, G. Gallone, F. Galantini, D.D. Rossi, in Dielectric Elastomers as Electromechanical Transducers, ed. by F. Carpi, D.D. Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen (Elsevier, Menlo Park, 2008), p. 51

    Chapter  Google Scholar 

  4. K. Han, Q. Li, Z. Chen, M.R. Gadinski, L. Dong, C. Xiong, Q. Wang, J. Mater. Chem. C 1, 7034 (2013)

    Article  CAS  Google Scholar 

  5. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Polymer 52, 5 (2011)

    Article  CAS  Google Scholar 

  6. T. Chen, Y. Zhao, L. Pan, M. Lin, J. Mater. Sci.: Mater. Electron. 26, 10164 (2015)

    CAS  Google Scholar 

  7. S. Liu, M. Tian, B. Yan, Y. Yao, L. Zhang, T. Nishi, N. Ning, Polymer 56, 375 (2015)

    Article  CAS  Google Scholar 

  8. M. Tian, Z. Wei, X. Zan, L. Zhang, J. Zhang, Q. Ma, N. Ning, T. Nishi, Compos. Sci. Technol. 99, 37 (2014)

    Article  CAS  Google Scholar 

  9. Y.-J. Wan, W.-H. Yang, S.-H. Yu, R. Sun, C.-P. Wong, W.-H. Liao, Compos. Sci. Technol. 122, 27 (2016)

    Article  CAS  Google Scholar 

  10. T. Chen, J. Qiu, K. Zhu, G. Li, J. Mater. Sci.: Mater. Electron. 26, 3730–3738 (2015)

    CAS  Google Scholar 

  11. L.J. Romasanta, M. Hernández, M.A. López-Manchado, R. Verdejo, Nanoscale Res. Lett. 6, 508 (2011)

    Article  Google Scholar 

  12. X. Zhi, Y. Mao, Z. Yu, S. Wen, Y. Li, L. Zhang, T.W. Chan, L. Liu, Composite A 76, 194 (2015)

    Article  CAS  Google Scholar 

  13. C. Wu, X. Huang, L. Xie, X. Wu, J. Yu, P. Jiang, J. Mater. Chem. 21, 17729 (2011)

    Article  CAS  Google Scholar 

  14. N. Ning, M. Wang, J. Zhang, L. Zhang, M. Tian, Int. J. Smart Nano Mater. 6(4), 251 (2015)

    Article  CAS  Google Scholar 

  15. T. Chen, J. Qiu, K. Zhu, J. Li, Mater. Des. 90, 1069 (2016)

    Article  CAS  Google Scholar 

  16. D. Yang, X. Kong, Y. Ni, M. Ruan, S. Huang, P. Shao, W. Guo, L. Zhang, Polymers 11, 218 (2019)

    Article  Google Scholar 

  17. M. Sadroddini, M. Razzaghi-Kashani, Smart Mater. Struct. 29, 015028 (2020)

    Article  CAS  Google Scholar 

  18. Y.-J. Wan, L.-X. Gong, L.-C. Tang, L.-B. Wu, J.-X. Jiang, Composites A 65, 79 (2014)

    Article  Google Scholar 

  19. W.-S. Ma, J. Li, B.-J. Deng, X.-S. Zhao, J. Mater. Sci. 48, 156 (2013)

    Article  CAS  Google Scholar 

  20. X. Wang, W. Xing, P. Zhang, L. Song, H. Yang, Y. Hu, Compos. Sci. Technol. 72, 737 (2012)

    Article  CAS  Google Scholar 

  21. J. Mo, W. Ma, G. Qiu, Y. Shi, J. Mater.: Sci. Mater. Electron. 30, 130 (2019)

    CAS  Google Scholar 

  22. L. Li, J. Yin, Y. Liu, X. Zhao, J. Mater. Chem. C 3, 5089 (2015)

    Article  Google Scholar 

  23. Y. Zeng, Y. Zhou, L. Kong, T. Zhou, G. Shi, Biosens. Bioelectron. 45, 25 (2013)

    Article  CAS  Google Scholar 

  24. H.-K. Jeong, Y.-P. Lee, M.-H. Jin, E.S. Kim, J.J. Bae, Y.H. Lee, Chem. Phys. Let. 470, 255 (2009)

    Article  CAS  Google Scholar 

  25. Y. Zhang, Y. Zhu, G. Lin, R.S. Ruoff, N. Hu, D.W. Schaefer, J.E. Mark, Polymer 54, 3605 (2013)

    Article  CAS  Google Scholar 

  26. T. Chen, J. Qiu, K. Zhu, X. He, X. Kang, E. Dong, Mater. Let. 128, 19 (2014)

    Article  CAS  Google Scholar 

  27. A. Ravindran, C. Feng, S. Huang, Y. Wang, Z. Zhao, J. Yang, Polymers 10, 477 (2018)

    Article  Google Scholar 

  28. F. He, S. Lau, H.L. Chan, J. Fan, Adv. Mater. 21, 710 (2009)

    Article  CAS  Google Scholar 

  29. D. Wang, Y. Bao, J.-W. Zha, J. Zhao, Z.-M. Dang, G.-H. Hu, A.C.S. Appl, ACS Appl. Mater. Interfaces 4, 6273 (2012)

    Article  CAS  Google Scholar 

  30. Y. Li, X. Huang, Z. Hu, P. Jiang, S. Li, T. Tanaka, ACS Appl. Mater. Interfaces 3, 4396 (2011)

    Article  CAS  Google Scholar 

  31. M. Sadroddini, M. Razzaghi-Kashani, M. Miranzadeh, M. Kassaee, Polym. Compos. 39, 1303 (2018)

    Article  CAS  Google Scholar 

  32. S.S. Hassouneh, A.E. Daugaard, A.L. Skov, Macromol. Mater. Eng. 300(5), 542 (2015)

    Article  CAS  Google Scholar 

  33. L. Liu, Y. Lei, Z. Zhang, J. Liu, S. Lv, Z. Guo, React.Funct. Polym. 104656 (2020)

  34. A.J. Marsden, D.G. Papageorgiou, C. Vallés, 2D Mater. 5, 032003 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tarbiat Modares University for its support on this work. They also appreciate the consultancy of Professor Mohammadzaman Kassaee.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MS involved in conceptualization, methodology, investigation, validation, and writing-original draft preparation. MR-K contributed to supervision, conceptualization, methodology, investigation, validation, resources, and writing-review & editing.

Corresponding author

Correspondence to Mehdi Razzaghi-Kashani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadroddini, M., Razzaghi-Kashani, M. Electromechanical performance of polydimethylsiloxane containing reduced graphene oxide grafted by long-chain alkyl silane. J Mater Sci: Mater Electron 31, 18844–18857 (2020). https://doi.org/10.1007/s10854-020-04423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04423-2

Navigation