Skip to main content
Log in

Nonlinearities in ferroelectric, piezoelectric, and dielectric behavior of Hf incorporated BaTiO3 nontoxic electroceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the structural, ferroelectric, piezoelectric, and dielectric properties of BaTi1−xHfxO3(x = 0, 0.04, 0.08) abbreviated as BT, BHT 1, and BHT-2 lead-free ceramics prepared by solid-state reaction. X-ray diffraction and Raman analysis confirm the formation of tetragonal lattice symmetry with a P4mm space group for studied compositions at room temperature. The tetragonality i.e. c/a ratio and average grain size found to be decreased with Hf4+ incorporation into BaTiO3 (BT). The nonlinearities in dielectric, ferroelectric and piezoelectric properties were observed with Hf4+ incorporation into BT, with the diffuse phase transition (DPT) for BaTi0.96Hf0.04O3 (BHT-1) ceramic, showing improved bulk density ~ 5.90 g/cm3, lattice strain ~ 0.168%, Pr ~ 9.03 μC/cm2, Ec ~ 3.44 kV/cm, Pmax ~ 17.42 μC/cm2, εm ~ 7391, Jmax ~ 4.52 × 10–3 A/cm2, d33 ~ 212 pC/N, diffuseness parameter γ ~ 1.58, with relatively higher Curie temperature (TC ~ 125 °C) than pure BaTiO3 a promising candidate for lead-free ferroelectric memory storage (Fe-RAM) and piezoelectric transducers application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Zuo, Xu Zhengkui, L. Li, J. Phys. Chem. Solids. 69(7), 1728–1732 (2008)

    CAS  Google Scholar 

  2. P.K. Panda, J. Mater. Sci. 44(19), 5049–5062 (2009)

    CAS  Google Scholar 

  3. J. Rodel, W. Jo, K. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Google Scholar 

  4. M. Habib, M. Munir, S.A. Khan, T.K. Song, M.-H. Kim, M.J. Iqbal, I. Qazi, A. Hussain, J. Phys. Chem. Solids. 138, 109230 (2020)

    CAS  Google Scholar 

  5. S.A. Mabud, J. Appl. Cryst. 13, 211–216 (1980)

    CAS  Google Scholar 

  6. X. Liu, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, J. Alloys. Compd. 640, 128–133 (2015)

    CAS  Google Scholar 

  7. O.A. Ramdasi, Y.D. Kolekar, D.J. Kim, T.K. Song, R.C. Kambale, AIP Conf. Proc. 1731, 100015 (2016)

    Google Scholar 

  8. T.R. Shrout, S.J. Zhang, J. Electroceram. 1(19), 113–126 (2007)

    Google Scholar 

  9. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    CAS  Google Scholar 

  10. Y. Hong, H. Bai, Z. Song, G. Li, M. Wang, Z. Zhou, Appl. Phys. Lett. 116, 013103 (2020)

    CAS  Google Scholar 

  11. H. Bai, J. Li, Y. Hong, Xu Tongtong, Z. Zhou, Appl. Phys. Lett. 117, 042904 (2020)

    CAS  Google Scholar 

  12. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29, 71–93 (2012)

    CAS  Google Scholar 

  13. M.C. Ehmke, F.H. Schader, K.G. Webber, J. Rödel, J.E. Blendell, K.J. Bowman, Acta Mater. 78, 37–45 (2014)

    CAS  Google Scholar 

  14. V.V. Mitic, Z.S. Nikolic, V.B. Pavlovic et al., J. Am. Ceram. Soc. 93(1), 132–137 (2010)

    CAS  Google Scholar 

  15. B.R. Elastic, J. Acoust. Soc. Am. 28, 347 (1956)

    Google Scholar 

  16. G.H. Haertling, J. Am. Ceram. Soc. 82(4), 797 (1999)

    CAS  Google Scholar 

  17. P.S. Kadhane, B.G. Baraskar, T.C. Darvade, A.R. James, R.C. Kambale, Solid State Commun. 306, 113797 (2020)

    CAS  Google Scholar 

  18. Y. Zhang, H. Sun, W. Chen, J. Phys. Chem. Solids. 114, 207–219 (2018)

    CAS  Google Scholar 

  19. Z. Chen, Z. Li, C. Fang, J. Qiu, J. Ding, W. Zhu, J. Xu, J. Phys. Chem. Solids. 111, 311–316 (2017)

    CAS  Google Scholar 

  20. S.K. Gaikwad, V.G. Ghodekar, O.A. Ramdasi, S.P. Kharat, S.G. Kakade, R.C. Kambale, Y.D. Kolekar, AIP Conf. Proc. 1731, 140061 (2016)

    Google Scholar 

  21. H. Chen, C. Yang, C. Fu, et al., J. Mater. Sci.: Mater. Electron. 19(4), 379–382 (2008)

  22. S.M. Ke, H.Q. Fan, H.T. Huang et al., J. Appl. Phys. 104(3), 034108 (2008)

    Google Scholar 

  23. W. Cai, C. Fu, J. Gao et al., J. Mater. Sci. 21(4), 317–325 (2010)

    CAS  Google Scholar 

  24. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Google Scholar 

  25. J. Ravez, C. Broustera, A. Simon, J. Mater. Chem. 9, 1609–1613 (1999)

    CAS  Google Scholar 

  26. V.S. Tiwari, N. Singh, D. Pandey, J. Phys. 7, 1441 (1995)

    CAS  Google Scholar 

  27. N. Settler, L.E. Cross, J. Appl. Phys. 51, 4356–4360 (1980)

    Google Scholar 

  28. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46(13), 8003–8006 (1992)

    CAS  Google Scholar 

  29. S. Anwar, P.R. Sagdeo, N.P. Lalla, Mater. Res. Bull. 43, 1761 (2008)

    CAS  Google Scholar 

  30. H.Y. Tian, Y. Wang, J. Miao, H.L.W. Chan, C.L. Choy, J. Alloys Compd. 431, 197 (2007)

    CAS  Google Scholar 

  31. V. Tura, L. Mitoseriu, E.P.L. Europhys, Lett. 50, 810 (2000)

    CAS  Google Scholar 

  32. S. Halder, P. Gerber, T. Schneller, R. Waser, Appl. Phys. A 83, 285–288 (2006)

    CAS  Google Scholar 

  33. A.R. Lopez Garcia, P. de la Persia, M. Rodigueza, Phys. Rev. B 44, 9708 (1991)

    CAS  Google Scholar 

  34. S. Anwar, P.R. Sagdeo, N.P. Lalla, Solid State Commun. 138, 331 (2006)

    CAS  Google Scholar 

  35. Y. Yang, Y. Zhou, J. Ren, Q. Zheng, K.H. Lam, D. Lin, J. Eur. Ceram. Soc. 38, 557 (2018)

    CAS  Google Scholar 

  36. T. Hwang, J. Kolodiazhnyi, M. Yang, Couillard. Phys. Rev. B 82, 214109 (2010)

    Google Scholar 

  37. S. Anwar, P.R. Sagdeo, N.P. Lalla, J. Phys. 18, 3455 (2006)

    CAS  Google Scholar 

  38. R.D. Shannon, C.T. Prewitt, Acta Cryst. B25, 925 (1969)

    Google Scholar 

  39. J.F. Li, Z.X. Zhu, F.P. Lai, J. Phys. Chem. C 114, 17796–17801 (2010)

    CAS  Google Scholar 

  40. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)

    CAS  Google Scholar 

  41. A.P.W. Taylor, E. Burstein, Solid State Commun. 5, 429–433 (1967)

    Google Scholar 

  42. A. Raeliarijaona, H. Fu, Phys. Rev. B 92, 094303 (2015)

    Google Scholar 

  43. J. Chen, Fu Chunlin, W. Cai, G. Chen, S. Ran, J. Alloys. Compd. 544, 82–86 (2012)

    CAS  Google Scholar 

  44. W.Q. Liao, Y. Zhang, C.L. Hu, J.G. Mao, H.Y. Ye, P.F. Li, S.D. Huamg, R.G. Xiong, Nat. Commun. 6, 7338 (2015)

    Google Scholar 

  45. B.G. Baraskar, R.C. Kambale, A.R. James, M.L. Mahesh, C.V. Ramana, Y.D. Kolekar, J. Am. Ceram. Soc. 100, 5755–5765 (2017)

    CAS  Google Scholar 

  46. J.P. Praveen, K. Kumar, A.R. James, T. Karthik, S. Asthana, D. Das, Curr. Appl. Phys. 14, 396–402 (2014)

    Google Scholar 

  47. O.A. Ramdasi, S.G. Kakade, R.C. Kambale, Y.D. Kolekar, Res. J. Mater. Sci. 4(3), 7–9 (2016)

    CAS  Google Scholar 

  48. X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Solid State Commun. 131, 163–168 (2004)

    CAS  Google Scholar 

  49. P. Ganguly, A.K. Jha, J. Alloys. Compd. 495, 7–12 (2010)

    CAS  Google Scholar 

  50. R. Laishram, A. Vashishtha et al., J. Mater. Sci. 30, 3965–3972 (2019)

    Google Scholar 

  51. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    CAS  Google Scholar 

  52. H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, S. Tsurekawa, Jpn. J. Appl. Phys. 45, L30 (2006)

    CAS  Google Scholar 

  53. W. Cai et al., Ceram. Int. 38, 3367–3375 (2012)

    CAS  Google Scholar 

  54. F. Guo, W. Cai, R. Gao et al., J. Electron. Mater. 48, 3239–3247 (2019)

    CAS  Google Scholar 

  55. P.A. Jha, A.K. Jha, J. Mater. Sci. 24, 1511–1518 (2013)

    CAS  Google Scholar 

  56. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002)

    CAS  Google Scholar 

  57. K. Uchino, S. Nomura, Integr. Ferroelectr. 44, 55 (1982)

    CAS  Google Scholar 

Download references

Acknowledgements

Dr. Rahul C. Kambale thankfully acknowledges the Science and Engineering Research Board (SERB)-DST, Government of India (File No. EMR/2016/001750, Extra Mural Research Funding scheme) and UGC-DAE CSR Indore, Government of India (Ref. CSR-IC-TIMR-07/CRS-274/2017-18/1280, Collaborative Research Scheme.) for providing the research funds to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul C. Kambale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramdasi, O.A., Kadhane, P.S., Kolekar, Y.D. et al. Nonlinearities in ferroelectric, piezoelectric, and dielectric behavior of Hf incorporated BaTiO3 nontoxic electroceramics. J Mater Sci: Mater Electron 31, 18803–18815 (2020). https://doi.org/10.1007/s10854-020-04420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04420-5

Navigation