Skip to main content
Log in

Improvement of dielectric properties of ZnO nanoparticles by Cu doping for tunable microwave devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a facile chemical polyol method to synthesize Cu-doped ZnO nanoparticles with various levels of Cu. X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV–Visible diffuse reflectance spectroscopy techniques were used to analyze the structural and optical properties of Zn1−xCuxO nanoparticles. The crystallite size varies between 9.8 and 18.9 nm and decreased with the increase of Cu doping. The band energy gaps of pure and Cu-doped ZnO samples are in the range 2.5–3.1 eV. The dielectric properties, ac conductivity and impedance analysis of Zn1−xCuxO nanoparticles were systematically investigated. It was revealed that the doping of ZnO by Cu (with low Cu molar content) leads to obtain high dielectric constant and low tangent loss, which are very encouraging for microwave semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Santos, C.M. Silveira, E. Elangovan, J.P. Neto, D. Nunes, L. Pereira, R. Martins, J. Viegas, J.J. Moura, S. Todorovic, M.G. Almeida, Synthesis of WO3 nanoparticles for biosensing applications. Sens. Actuators B 223, 186–194 (2016)

    Article  CAS  Google Scholar 

  2. X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, ZnS nanostructures: synthesis, properties, and applications. Crit. Rev. Solid State Mater. Sci. 38(1), 57–90 (2013)

    Article  Google Scholar 

  3. Y. Al-Douri, Optical properties of GaN nanostructures for optoelectronic applications. Procedia Eng. 53, 400–404 (2013)

    Article  CAS  Google Scholar 

  4. P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today 22, 1825–1834 (2017)

    Article  CAS  Google Scholar 

  5. E. Manikandan, V. Murugan, G. Kavitha, P. Babu, M. Maaza, Nanoflower rod wire-like structures of dual metal (Al and Cr) doped ZnO thin films: structural, optical and electronic properties. Mater. Lett. 131, 225–228 (2014)

    Article  CAS  Google Scholar 

  6. R. Tayebee, A.H. Nasr, S. Rabiee, E. Adibi, Zinc oxide as a useful and recyclable catalyst for the one-pot synthesis of 2,4,6-trisubstituted-1,3,5-trioxanes under solvent-free conditions. Eng. Chem. Res. 52, 9538–9543 (2013)

    Article  CAS  Google Scholar 

  7. A.H. Shah, M.B. Ahamed, E. Manikandan, R. Chandramohan, M. Iydroose, Magnetic, optical and structural studies on Ag doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 24, 2302–2308 (2013)

    CAS  Google Scholar 

  8. M. Kaushik, R. Niranjan, R. Thangam, B. Madhan, V. Pandiyarasan, C. Ramachandran, D.H. Oh, G.D. Venkatasubbu, Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 479, 1169–1177 (2019)

    Article  CAS  Google Scholar 

  9. K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B. Rayappan, R. Ladchumananandasivam, J.S. Aanand, M. Jayachandran, M. Maaza, Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers. IEEE Sens. J. 16(8), 2477–2483 (2016)

    Article  CAS  Google Scholar 

  10. S. Goel, B. Kumar, A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. J. Alloys Compds. 816, 152491 (2020)

    Article  CAS  Google Scholar 

  11. H. Agarwal, S.V. Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resource Effic. Technol. 3(4), 406–413 (2017)

    Article  Google Scholar 

  12. R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Dev. 2, 51–58 (2017)

    Google Scholar 

  13. B.D. Ngom, T. Mpahane, E. Manikandan, M. Maaz, ZnO nano-discs by lyophilization process: size effects on their intrinsic luminescence. J. Alloy Compd. 656, 758–763 (2016)

    Article  CAS  Google Scholar 

  14. S.P. Chang, K.J. Chen, Zinc oxide nanoparticle photodetector. J. Nanomater. 602398 (2012)

  15. A. Muthukumar, D. Arivuoli, E. Manikandan, M. Jayachandran, Enhanced violet photoemission of nanocrystalline fluorine doped zinc oxide (FZO) thin films. Opt. Mater. 47, 88–94 (2015)

    Article  Google Scholar 

  16. S. Bhatia, N. Verma, R.K. Bedi, Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques. Results Phys. 7, 801–806 (2017)

    Article  Google Scholar 

  17. G. Kavitha, K. Thanigai Arul, P. Babu, Enhanced acetone gas sensing behavior of n-ZnO/p-NiO nanostructures. J. Mater. Sci.: Mater. Electron. 2(8), 6666–6671 (2018)

    Google Scholar 

  18. L. Chen, Z. Yu-Ming, Z. Yi-Men, L. Hong-Liang, Interfacial characteristics of Al/Al2O3/ZnO/n-GaAs MOS capacitor. Chin. Phys. B 22(7), 076701 (2013)

    Article  Google Scholar 

  19. M. Laurenti, N. Garinoa, S. Porro, M. Fontana, C. Gerbaldi, Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries. J. Alloy Compd. 640, 321–326 (2015)

    Article  CAS  Google Scholar 

  20. K.K. Kim, D. Kim, S.K. Kim, S.M. Park, J.K. Song, Formation of ZnO nanoparticles by laser ablation in neat water. Chem. Phys. Lett. 511(1–3), 116–120 (2011)

    Article  CAS  Google Scholar 

  21. N.T. Rochman, A.P. Riski, Fabrication and characterization of Zinc Oxide (ZnO) nanoparticle by sol-gel method. JPhCS. 853(1), 012041 (2017)

    Google Scholar 

  22. P. Veluswamy, S. Suhasini, F. Khan, A. Ghosh, M. Abhijit, Y. Hayakawa, H. Ikeda, Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications. Carbohydr. Polym. 157, 1801–1808 (2016)

    Article  Google Scholar 

  23. P. Veluswamy, S. Suhasini, J. Archana, M. Navaneethan, A. Majumdar, Y. Hayakawa, H. Ikeda, Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications. Appl. Surf. Sci. 418, 352–361 (2017)

    Article  Google Scholar 

  24. Ö.A. Yıldırım, C. Durucan, Synthesis of zinc oxide nanoparticles elaborated by micro-emulsion method. J. Alloy. Compd. 506, 944–949 (2010)

    Article  Google Scholar 

  25. D.B. Bharti, A.V. Bharati, Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity. Luminescence 32, 317–320 (2017)

    Article  CAS  Google Scholar 

  26. B.W. Chieng, Y.Y. Loo, Synthesis of ZnO nanoparticles by modified polyol method. Mater. Lett. 73, 78–82 (2012)

    Article  CAS  Google Scholar 

  27. F. Fiévet, S. Ammar-Merah, R. Brayner, F. Chau, M. Giraud, F. Mammeri, J. Peron, J.-Y. Piquemal, L. Sicard, G. Viau, The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 47(47), 5187–5233 (2018)

    Article  Google Scholar 

  28. S. Sharma, K. Nanda, R.S. Kundu, R. Punia, N. Kishore, Structural properties, conductivity, dielectric studies and modulus formulation of Ni modified ZnO nanoparticles. J. Atom. Mol. Condens. Nano Phys. 2, 15–31 (2015)

    Google Scholar 

  29. C. Thenmozhi, V. Manivannan, E. Kumar, S. Veera, R. Murugan, Structural and frequency dependent dielectric properties of ZnO nanoparticles and PANI/ ZnO nanocomposites by microwave—assisted solution method. Int. J. Adv. Res. 4, 572–578 (2016)

    Article  CAS  Google Scholar 

  30. I. Ahmad, M.E. Mazhar, M.N. Usmani, K. Khan, S. Ahmad, J. Ahmad, Impact of silver dopant on electrical and dielectric properties of ZnO nanoparticles. Mater. Res. Express 6, 035014 (2019)

    Article  Google Scholar 

  31. C. Belkhaoui, R. Lefi, N. Mzabi, H. Smaoui, Synthesis, optical and electrical properties of Mn doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 7020–7031 (2018)

    CAS  Google Scholar 

  32. R. Zamiri, B. Singh, M.S. Belsley, J.M. Ferreira, Structural and dielectric properties of Al-doped ZnO nanostructures. Ceram. Int. 40, 6031–6036 (2014)

    Article  CAS  Google Scholar 

  33. A. Franco Jr., H.V.S. Pessoni, Enhanced dielectric constant of Co-doped ZnO nanoparticulate powders. Phys. B 476, 12–18 (2015)

    Article  CAS  Google Scholar 

  34. H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. J. Acta Cryst. 22, 151–152 (1967)

    Article  CAS  Google Scholar 

  35. C.J. Rodriguez, A Program for Rietveld Refinement and Pattern Matching Analysis,” Abstract of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Collected Abstract of Powder Diffraction Meeting. Toulouse, France, (1990) 127.

  36. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  37. M. Fu, Y. Li, S. Wu, P. Lu, J. Liu, F. Dong, Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci. 258, 1587–1591 (2011)

    Article  CAS  Google Scholar 

  38. M. Moffitt, A. Eisenberg, Size control of nanoparticles in semiconductor-polymer composites. 1. Control via multiplet aggregation numbers in styrene-based random ionomers. J. Chem. Mater. 7, 1178–1184 (1995)

    Article  CAS  Google Scholar 

  39. C. Wu, L. Shen, H. Yu, Y.C. Zhang, Q. Huang, Solvothermal synthesis of Cu-doped ZnO nanowires with visible light-driven photocatalytic activity. J. Mater Lett. 74, 236–238 (2012)

    Article  CAS  Google Scholar 

  40. A. Selmi, M. Mascot, F. Jomni, J.-C. Carru, Investigation of interfacial dead layers parameters in Au/Ba0.85Sr0.15TiO3/Pt capacitor devices. J. Alloys Compds. 826, 154048 (2020)

    Article  CAS  Google Scholar 

  41. K. Jeyasubramaniana, R.V. William, P. Thiruramanathan, G.S. Hikku, M. Vimal Kumar, B. Ashima, P. Veluswamy, H. Ikeda, Dielectric and magnetic properties of nanoporous nickel doped zinc oxide for spintronic applications. J. Magn. Magn. Mater. 485, 27–35 (2019)

    Article  Google Scholar 

  42. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 30, 9520–9530 (2019)

    CAS  Google Scholar 

  43. A. Selmi, M. Mascot, F. Jomni, J.-C. Carru, High tunability in lead-free Ba0.85Sr0.15TiO3thick films for microwave tunable applications. Ceram. Int. B 45, 22445–23856 (2019)

  44. A. Selmi, O. Khaldi, M. Mascot, F. Jomni, J.-C. Carru, Dielectric relaxations in Ba0.85Sr0.15TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by sol–gel method. J. Mater. Sci.: Mater. Electron. 27, 11299–11307 (2016)

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant. No. (D-625-130-1441). The authors, therefore, gratefully acknowledge DSR technical and financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Selmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmi, A., Fkiri, A., Bouslimi, J. et al. Improvement of dielectric properties of ZnO nanoparticles by Cu doping for tunable microwave devices. J Mater Sci: Mater Electron 31, 18664–18672 (2020). https://doi.org/10.1007/s10854-020-04408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04408-1

Navigation