Skip to main content
Log in

Synthesis and characterization of Cu-doped ZnCdO nanomaterials with improved dielectric and impedance properties for potential applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cu ion–doped Zn0.94Cd0.06−xCuxO (x = 3 and 5 wt%) nanomaterials are prepared via low temperature sol–gel auto-combustion method using citric acid (C6H8O7) as a fuel radical. Tailoring effects of Cu doping concentration on the optical and dielectric relaxation properties of Zn0.94Cd0.06O nanomaterials are investigated using XRD technique, UV–Vis diffuse reflectance, and impedance spectroscopy. XRD analysis reveals that all the prepared nanomaterials are crystallized in wurtzite hexagonal structure with space group P63mc. Rietveld refinement also confirms the single-phase crystalline nature. The average diameters of the synthesized nanomaterials estimated by Debye–Scherrer formula are found as ~ 29.50 nm (Zn0.94Cd0.03Cu0.03O) and 30.21 nm (Zn0.94Cd0.01Cu0.05O) after calcination at 600 °C. Direct band gap increases from 3.04 eV (3 wt% Cu) to 3.10 eV (5 wt% Cu) with increasing Cu concentration. Dielectric behavior is governed by the space charge polarization whereas the electric modulus studies support non-Debye [β < 1 (0.83 at 3 wt% Cu and 0.88 at 5 wt% Cu)] type of dielectric relaxation. The Nyquist plot of 3 wt% Cu ion doping shows small semicircle, which is associated with non-ohmic nature. Sizes of the semicircles are correlated with the grain resistance that points out the electrode nature of prepared nanomaterials. Finally, 3 wt% Cu ion–doped nanomaterials show high value of dielectric constant (~ 1150 at 20 Hz) and minimum loss (~ 1.96 at 20 Hz) that may be suitable for potential application in semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Karimi M, Jahangir V, Ezzati M, Saydi J, Lejbini MB (2014) Zn0.94Cd0.06O nanoparticles with various structures, morphologies and optical properties toward MB optodecolorization. Opt Mater 36:697–703

    Article  CAS  Google Scholar 

  2. Nahm C, Shin S, Lee W, Kim JI, Jung DR, Kim J, Nam S, Byun S, Park B (2013) Electronic transport and carrier concentration in conductive ZnO:Ga thin films. Curr Appl Phys 13:415–418

    Article  Google Scholar 

  3. Wang B, Iqbal J, Shan X, Huang G, Fu H, Yu R, Yu D (2009) Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route. Mater Chem Phys 113:103–106

    Article  CAS  Google Scholar 

  4. Yan X, Itoh T, Dai S, Ozaki Y, Fang Y (2013) Cu, Mn doping effect to optical behavior and electronic structure of ZnO ceramic. J Phys Chem Solids 74:1127–1130

    Article  CAS  Google Scholar 

  5. Xu L, Li X (2010) Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method. J Crystal Growth 312:851

    Article  CAS  Google Scholar 

  6. Wu D, Yang M, Huang Z, Yin G, Liao X, Kang Y, Chen X, Wang H (2009) Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution. J Colloid Interface Sci 330:380–385

    Article  CAS  Google Scholar 

  7. Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensors Actuators B 115:247–251

    Article  CAS  Google Scholar 

  8. Chen T, Zheng Y, Lin JM, Chena G (2008) Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. J Am Soc Mass Spectrom 19:997–1003

    Article  CAS  Google Scholar 

  9. Sagadevan S, Pal K, Chowdhury ZZ, Hoque ME (2017) Structural, dielectric and optical investigation of chemically synthesized Ag-doped ZnO nanoparticles composites. J Sol-Gel Sci Technol 83:394–404

    Article  CAS  Google Scholar 

  10. Wang F, Liu B, Zhao C, Yuan S (2009) Synthesis of Zn1−xCdxO bramble-like nanostructures. Mater Lett 63:1357–1359

    Article  CAS  Google Scholar 

  11. Rodl C, Schleife (2014) Photoemission spectra and effective masses of n- and p-type oxide semiconductors from first principles: ZnO, CdO, SnO2, MnO, and NiO. Phys Status Solidi A 211:74

    Article  Google Scholar 

  12. Park MS, Min BI (2003) Ferromagnetism in ZnO codoped with transition metals: Zn1−x(FeCo)xO and Zn1−x(FeCu)xO. Phys Rev B 68:224436

    Article  Google Scholar 

  13. Buchholz DB, Chang RPH, Song JH, Ketterson JB (2005) Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl Phys Lett 87:082504

    Article  Google Scholar 

  14. Sharma S, Nanda K, Kundu RS, Punia R, Kishore N (2015) Structural properties, conductivity, dielectric studies and modulus formulation of Ni modified ZnO nanoparticles. J Atom Mol Nano Phys 2:15

  15. Das BK, Das T (2017) Structural, optical and dielectric study of Cu doped ZnO nanoparticles synthesised by high energy ball milling. Int J Nano Biomaterials 7(2):140

    Article  Google Scholar 

  16. Verma K, Kumar A, Varshney D (2012) Dielectric relaxation behavior of AxCo1−xFe2O4 (A=Zn, Mg) mixed ferrites. J Alloys Compd 526:91–97

    Article  CAS  Google Scholar 

  17. Wang F, Liu B, Zhang Z, Yuan S (2009) Synthesis and properties of Cd-doped ZnO nanotubes. Phys E 41:879–882

    Article  CAS  Google Scholar 

  18. Varghese N, Panchakarla LS, Hanapi M, Govindaraj A, Rao CNR (2007) Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO. Mater Res Bull 42:2117–2124

    Article  CAS  Google Scholar 

  19. Zhou SM, Zhang XH, Meng XM, Wu SK, Lee ST (2006) Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires. Mater Res Bull 41:340–346

    Article  CAS  Google Scholar 

  20. Saxena P, Varshney D (2017) Effect of d-block element substitution on structural and dielectric properties on iron cobaltite. J Alloys Compd 705:320–326

    Article  CAS  Google Scholar 

  21. Hasnidawani JN, Azlina HN, Norita H, Bonnia NN, Ratim S, Ali ES (2016) Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem 19:211–216

    Article  CAS  Google Scholar 

  22. Ravichandran K, Saravanakumar K, Chandramohan R, Nandhakumar V (2012) Influence of simultaneous doping of Cd and F on certain physical properties of ZnO nanopowders synthesized via a simple soft chemical route. Appl Surf Sci 261:405–410

    Article  CAS  Google Scholar 

  23. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32 32:751–767

    Article  Google Scholar 

  24. Albores FP, Delgado FP, Flores WA, Madrid PA, Valdovinos ER, Yoshida MM (2011) Microstructural study of ZnO nanostructures by Rietveld analysis. J Nanomater 643126:1

  25. Morales AE, Mora ES, Pal U (2007) Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev Mexicana Ficisa S 53(2):18

  26. Heinemann M, Eifert B, Heiliger C (2013) Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys Rev B 87:115111

    Article  Google Scholar 

  27. Acharya AD, Moghe S, Panda R, Shrivastava SB, Gangrade M, Shripathi T, Phase DM, Ganesan V (2012) Effect of Cd dopant on electrical and optical properties of ZnO thin films prepared by spray pyrolysis route. Thin Solid Films 525:49–55

    Article  CAS  Google Scholar 

  28. Wang YS, Thomas PJ, Brien PO (2006) Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. J Phys Chem B 110:21412–21415

    Article  CAS  Google Scholar 

  29. Kamarulzaman N, Kasim MF, Rusdi R (2015) Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res Lett 10:346

    Article  Google Scholar 

  30. Choudhary P, Varshney D (2018) Dielectric relaxation behavior and impedance studies of Cu2+ ion doped Mg – Zn spinel nanoferrites. Solid State Commun 271:89–96

    Article  CAS  Google Scholar 

  31. Kamran M, Ullah A, Rahman S, Tahir A, Nadeem K, Rehman MA, Hussain S (2017) Structural, magnetic, and dielectric properties of multiferroic Co 1−x Mg x Cr 2 O 4 nanoparticles. J Magn Magn Mater 433:178–186

    Article  CAS  Google Scholar 

  32. Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev 83:121–124

    Article  CAS  Google Scholar 

  33. Yadav HK, Sreenivas K, Gupta V, Scott JF, Katiyar RS (2008) Raman spectroscopy and dielectric studies of multiple phase transitions in ZnO:Ni. Appl Phys Lett 92:122908

    Article  Google Scholar 

  34. Ghosh CK, Malkhandi S, Mitra MK, Chattopadhyay KK (2008) Effect of Ni doping on the dielectric constant of ZnO and its frequency dependent exchange interaction. J Phys D Appl Phys 41:245113

    Article  Google Scholar 

  35. Manimuthu P, Murugaraj R, Venkateswaran C (2014) Non-universal dielectric relaxation in SrFeO3−δ. Phys Lett A 378:2725–2728

    Article  CAS  Google Scholar 

  36. Pandit R, Sharma KK, Kaur P, Kumar R (2014) Cation distribution controlled dielectric, electrical and magnetic behavior of In 3+ substituted cobalt ferrites synthesized via solid-state reaction technique. Mater Chem Phys 148:988–999

    Article  CAS  Google Scholar 

  37. Dar MA, Varshney D (2018) Structures and properties of Mg0.95Mn0.01TM0.04O (TM = Co, Ni, and Cu) nanoparticles synthesized by sol–gel auto combustion technique. RSC Adv 8:14120–14128

    Article  CAS  Google Scholar 

  38. Kambale RC, Shaikh PA, Bhosale CH, Rajpure KY, Kolekar YD (2009) Dielectric properties and complex impedance spectroscopy studies of mixed Ni–Co ferrites. Smart Mater Struct 18:085014

    Article  Google Scholar 

  39. Thomas AK, Abraham K, Thomas J, Saban KV (2017) Electrical and dielectric behaviour of Na0.5La0.25Sm0.25Cu3Ti4O12 ceramics investigated by impedance and modulus spectroscopy. J Asian Ceram Soc 5:56–61

    Article  Google Scholar 

  40. Tang R, Jiang C, Qian W, Jian J, Zhang X, Wang H, Yang H (2015) Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci Rep 5:13645

    Article  CAS  Google Scholar 

  41. Choudhary P, Varshney D (2018) Elucidation of structural, vibrational and dielectric properties of transition metal (Co 2+ ) doped spinel Mg-Zn chromites. J Magn Magn Mater 454:274–288

    Article  CAS  Google Scholar 

  42. Hemalatha KS, Sriprakash G, Prasad MVNA, Damle R, Rukmani K (2015) Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy. J Appl Phys 118:154103

    Article  Google Scholar 

  43. Sharma MK, Gayen RN, Pal AK, Kanjilal D, Chatterjee R (2011) Complex impedance spectroscopy of Mn-doped zinc oxide nanorod films. Solid State Commun 151:1182–1187

    Article  CAS  Google Scholar 

  44. Sinclair DC (1995) Characterization of electro-materials using ac impedance spectroscopy. Ceramica Y Vidrio 34:55

  45. Irvine JTS, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2:132–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. M. Gupta and Dr. U. P. Deshpande of UGC-DAE CSR, Indore for the fruitful discussions. The authors are also thankful to Late Dr. Dinesh Varshney for his guidance and encouragement. Miss Gagandeep Kaur, School of Chemical Sciences, Indore, is gratefully acknowledged for his support.

Funding

UGC-DAE-CSR, as an institute, extended its facilities and provided financial assistance (Grant No.: CSRIC/BL-22/CRS-119-2014/269) for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Choudhary.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, P., Saxena, P., Yadav, A. et al. Synthesis and characterization of Cu-doped ZnCdO nanomaterials with improved dielectric and impedance properties for potential applications. Ionics 25, 4991–5001 (2019). https://doi.org/10.1007/s11581-019-03014-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03014-4

Keywords

Navigation