Skip to main content
Log in

Structural and electrical characterization studies for ternary composite of polypyrrole

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, temperature dependence of alternate current (AC) and direct current (DC) conductivities of optimized polypyrrole/silver-tantalum oxide (PPy/Ag–Ta2O5), a ternary conducting polymer composite is comparatively studied with those of PPy and PPy/Ag. For the purpose, silver (Ag) nanoparticles were encapsulated with polypyrrole (PPy) by in situ oxidative polymerization to form core–shell structured PPy/Ag composite for which Ag nanoparticles were extracted from green tea. The PPy/Ag composite was then mechanically mixed with tantalum pentoxide (Ta2O5) to form PPy/Ag-Ta2O5 ternary composite. Increase in depth of delocalization band of PPy in ternary composite as compared to those of PPy/Ag composite and PPy, indicating its increased AC conductivity confirmed from the comparative FTIR analyses. Interaction between PPy/Ag composite and Ta2O5 in the ternary composite was confirmed from XRD studies. The formation of core–shell structured PPy/Ag composite and Ta2O5 particles embedded in such PPy/Ag composite to form PPy/Ag–Ta2O5 ternary composite confirmed from TEM and Raman studies. The frequency- and temperature-dependent electrical conductivity studies revealed increase in AC conductivity of the ternary composite as compared to those of PPy/Ag composite and pure PPy attributed mainly to interfacial effects. The charge transport in these samples predicted to be due to correlated barrier hopping of charges was confirmed by calculating their respective AC and DC activation energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y.Z. Long, M.M. Li, C. Gu, M. Wan, J.L. Duvail, Z. Liu, Z. Fan, Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 36, 1415–1442 (2011)

    Article  CAS  Google Scholar 

  2. R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Raj Prakash, S.K. Tiwari, S. Thomas, Enhancement in alternating current conductivity of polypyrrole by multiwalled carbon nanotubes via single electron tunneling. Diamond Relat. Mater. 87, 163–171 (2018)

    Article  CAS  Google Scholar 

  3. M. Balaji, P. Chitra Lekha, D. Pathinettam Padiyan, Core-shell structure in copper ferrite-polyaniline nanocomposite: confirmation by laser Raman spectra. Vibrat. Spectrosc. 62, 92–97 (2012)

    Article  CAS  Google Scholar 

  4. R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Rajprakash, S. Manjunatha, M. Revanasiddappa, M. Prashantkumar, S. Thomas, AC conductivity studies in copper decorated and zinc oxide embedded polypyrrole composite nanorods: Interfacial effects. Mater. Sci. Semicond. Process. 110, 104963 (2020)

    Article  CAS  Google Scholar 

  5. U. Bogdanovic, V.V. Vodnik, S.P. Ahrenkiel, M. Stoiljkovic, G.C. Marjanovic, J.M. Nedelikovic, Interfacial synthesis and characterization of gold/polyaniline nanocomposites. Synth. Met. 195, 122–131 (2014)

    Article  CAS  Google Scholar 

  6. M. Devi, A. Kumar, Structural, thermal and dielectric properties of in-situ reduced grapheme oxide—polypyrrole nanotubes nanocomposites. Mater. Res. Bull. 97, 207–214 (2018)

    Article  CAS  Google Scholar 

  7. C. Zhan, G. Yu, Y. Lu, L. Wang, E. Wujcik, S. Wei, Conductive polymer nanocomposites: a critical review of modern advanced devices. J. Mater. Chem. C 5, 1569–1585 (2017)

    Article  CAS  Google Scholar 

  8. R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, T. Chandrasekhar, S. Thomas, Optimized polyaniline-transition metal oxide composites: a comparative study of alternating current conductivity via correlated barrier hopping model. Polymer Compos. 39, 3545–3555 (2018)

    Article  CAS  Google Scholar 

  9. R. Megha, Y.T. Ravikiran, S. Kotresh, S.C. Vijaya Kumari, H.G. Raj Prakash, S. Thomas, Carboxymethyl cellulose: an efficient material in enhancing alternating current conductivity of HCl doped polyaniline. Cellulose 25, 1147–1158 (2018)

    Article  CAS  Google Scholar 

  10. R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Raj Prakash, C.H.V.V. Ramana, S. Thomas, Enhancement in alternating current conductivity of HCl doped polyaniline by modified titania. Compos. Interfaces 26, 309–324 (2019)

    Article  CAS  Google Scholar 

  11. Z. Xu, Z. Zhang, H. Yin, S. Hou, H. Lin, J. Zhou, S. Zhuo, Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced rapheme oxide/conductive polymer ternary composite electrode. RSC Adv. 10, 3122–3129 (2020)

    Article  CAS  Google Scholar 

  12. D. Zhang, Z. Wu, X. Zong, Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actu. B Chem. 289, 32–41 (2019)

    Article  CAS  Google Scholar 

  13. K. Pandiselvi, H. Fang, X. Huang, J. Wang, X. Xu, T. Li, Constructing a novel carbon nitride/polyaniline/ZnO ternary heterostructure with enhanced photocatalytic performance using exfoliated carbon nitride nanosheets as supports. J. Hazard. Mater. 314, 67–77 (2016)

    Article  CAS  Google Scholar 

  14. H.V. Hussaina, M. Ahmadb, M.T. Ansarb, G.M. Mustafab, S. Ishaqa, S. Naseemb, G. Murtazac, F. Kanwala, S. Atiq, Polymer based nickel ferrite as dielectric composite for energy storage applications. Synth. Met. 268, 116507 (2020)

    Article  Google Scholar 

  15. N. Zhou, D. Li, D. Yang, The kinetically dominated overgrowth of flower-like silver nanostructures and its application for surface-enhanced raman scattering. Key Eng. Mater. 605, 259–262 (2014)

    Article  Google Scholar 

  16. S. Sampaio, J.C. Viana, Production of silver nanoparticles by green synthesis using artichoke (Cynara scolymus L.) aqueous extract and measurement of their electrical conductivity. Adv. Nat. Sci 9, 045002 (2018)

    CAS  Google Scholar 

  17. K.N. Manukumar, B. Kishore, K. Manjunath, G. Nagaraju, Mesoporous Ta2O5 nanoparticles as an anode material for lithium ion battery and an efficient photocatalyst for hydrogen evolution. Int. J. Hydrogen Energy 43, 18125–18135 (2018)

    Article  CAS  Google Scholar 

  18. M.A. Asghar, E. Zahir, S.M. Shahid, M.N. Khan, M.A. Asghar, J. Iqbal, G. Walker, Iron, copper and silver nanoparticles: Green synthesis using grren and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT-Food Sci. Technol. 90, 98–107 (2018)

    Article  CAS  Google Scholar 

  19. Y. Ali, K. Sharma, V. Kumar, R.G. Sonkawadec, A.S. Dhaliwal, Polypyrrole microspheroidals decorated with Ag nanostructure: Synthesis and their characterization. Appl. Surf. Sci. 280, 950–956 (2013)

    Article  CAS  Google Scholar 

  20. A. Singh, Z. Salmi, N. Joshi, P. Jha, P. Decorse, H. Lecoq, S. Lau-Truong, M. Jouini, D.K. Aswal, M.M. Chehimi, Electrochemical investigation of free-standing polypyrrole–silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Adv. 3, 24567 (2013)

    Article  CAS  Google Scholar 

  21. A. Salabat, F. Mirhoseini, M. Arjomandzadegan, E. Jiryaei, A novel methodology for fabrication of Ag-polypyrrole core-shell nanosphere using microemulsion system and evaluation of its antibacterial application. N. J. Chem. 41, 12892–12900 (2017)

    Article  CAS  Google Scholar 

  22. L. Kabir, A.R. Mandal, S.K. Mandal, Humidity-sensing properties of conducting polypyrrole-silver nanocomposites. J. Exp. Nanosci. 3, 297–305 (2008)

    Article  CAS  Google Scholar 

  23. M. Dhingra, S. Shrivastava, P. Senthil Kumar, S. Annapoorni, Polyaniline mediated enhancement in band gap emission of zinc oxide. Compos. Part B 45, 1515–1520 (2013)

    Article  CAS  Google Scholar 

  24. S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Polypyrrole, α-Fe2O3 and their hybrid nanocomposite sensor: an impedance spectroscopy study. Org. Electron. 15, 2159–2167 (2014)

    Article  CAS  Google Scholar 

  25. Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen, C.P. Yu, Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf. A 444, 226–231 (2014)

    Article  CAS  Google Scholar 

  26. K. Bogusz, M. Zuchora, V. Sencadas, M. Tehei, M. Lerch, N. Thorpe, A. Rosenfeld, S.X. Dou, H.K. Liu, K. Konstantinov, Synthesis of methotrexate-loaded tantalum pentoxide-poly(acrylic acid) nanoparticles for controlled drug release applications. J. Colloid Interface Sci. 538, 286–296 (2019)

    Article  CAS  Google Scholar 

  27. F. Kanwal, S.A. Siddiqi, A. Batool, M. Imran, W. Mushtaq, T. Jamil, Synthesis of polypyrrole-ferric oxide (PPy-Fe2O3) composites and study of their structural and conducting properties. Synth. Met. 161, 335–339 (2011)

    Article  CAS  Google Scholar 

  28. A.T. Mane, S.D. Sartale, V.B. Patil, Dodecyl benzene sulfonic acid (DBSA) doped polypyrrole (PPy) films: synthesis, structural, morphological, gas sensing and impedance study. J. Mater. Sci. Mater. Electron. 26, 8497–8506 (2015)

    Article  CAS  Google Scholar 

  29. A. Salabat, F. Mirhoseini, M. Mahdieh, H. Saydi, Novel nanotube-shaped polypyrrole-Pd composite prepared using reverse microemulsion polymerization and its evaluation as an antibacterial agent. New J. Chem. 39, 4109–4114 (2015)

    Article  CAS  Google Scholar 

  30. A.J. Kora, S.R. Beedu, A. Jayaraman, Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Organic Med. Chem. Lett. 2, 1–10 (2012)

    Article  Google Scholar 

  31. S. Manjunath, T. Machappa, A. Sunilkumar, Y.T. Ravikiran, Tungsten disulfide: an efficient material in enhancement of AC conductivity and dielectric properties of polyaniline. J. Mater. Sci. Mater. Electron. 29, 11581–11590 (2018)

    Article  Google Scholar 

  32. Y.T. Ravikiran, M.T. Lagare, M. Sairam, N.N. Mallikarjuna, B. Sreedhar, S. Manohar, A.G. MacDiarmid, T.M. Aminabhavi, Synthesis, characterization and low frequency AC conduction of polyaniline/niobium pentoxide composites. Synth. Met. 156, 1139–1147 (2006)

    Article  CAS  Google Scholar 

  33. A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Progress Nat. Sci. Mater. Int. 22, 273–280 (2012)

    Article  Google Scholar 

  34. J. Hazarika, A. Kumar, Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni12+ swift heavy ions. Nuclear Instr. Methods Phys. Res. B 333, 73–79 (2014)

    Article  CAS  Google Scholar 

  35. B. Angadi, P. Victor, V.M. Jali, M.T. Lagare, R. Kumar, S.B. Krupanidhi, AC conductivity studies on the Li irradiated PZT and SBT ferroelectric thin films. Mater. Sci. Eng. B 100, 93–101 (2003)

    Article  Google Scholar 

  36. K. Gupta, P.C. Jana, A.K. Meikap, Optical and electrical transport properties of polyaniline-silver nanocomposite. Synth. Met. 160, 1566–1573 (2010)

    Article  CAS  Google Scholar 

  37. A. Dey, S. De, A. De, S.K. De, Characterization and dielectric properties of polyaniline–TiO2 nanocomposites. Nanotechnology 15, 1277–1283 (2004)

    Article  CAS  Google Scholar 

  38. S.S. Fouad, G.B. Sakr, I.S. Yahia, D.M. Abdel-Basset, F. Yakuphanoglu, Impedance spectroscopy of p-ZnGa2Te4/n-Si nano-HJD. Phys. B 415, 82–91 (2013)

    Article  CAS  Google Scholar 

  39. A.E. Bekheet, N.A. Hegab, Ac conductivity and dielectric properties of Ge20Se75In5 films. Vacumm 83, 391–396 (2009)

    Article  Google Scholar 

  40. S.R. Elliott, A.C. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University Grants Commission, New Delhi, for granting the financial support under major research project (41-917/2012 (SR) dated: 23/07/2012). This paper is a collaborative effort between Government Science College, Chitradurga and Mahatma Gandhi University, Kottayam-686 560, India. The authors also acknowledge Visvesvaraya Technological University – Research Resource Centre, Belagavi 590 018, Karnataka, India for their support and encouragement in carrying out research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. T. Ravikiran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megha, R., Ravikiran, Y.T., Kumari, S.C.V. et al. Structural and electrical characterization studies for ternary composite of polypyrrole. J Mater Sci: Mater Electron 31, 18400–18411 (2020). https://doi.org/10.1007/s10854-020-04386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04386-4

Navigation