Skip to main content
Log in

Experimental and computational studies on third-order urea salicylic acid single crystal for optoelectronic device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Slow evaporation solution growth technique was adopted to grow good quality urea salicylic acid (USA) single crystals. Single-crystal X-ray diffraction confirmed their cell parameters and corresponding space group. Density functional theory (DFT) calculation was utilized to assess the frontier molecular orbital (FMO) and natural bonding orbitals (NBO) of the USA compound. Theoretically calculated bandgap energy was slightly different from the measured value of 3.49 eV and is utilized in understanding the charge transfer taking place in the molecule. The sample showed a lower cutoff wavelength of 350 nm. FTIR confirmed the presence of relevant functional groups and was found to be thermally stable up to 117 °C. The specific heat capacity of the title compound was found to be 1.28 J/kg/K at 30 °C. Laser damage threshold energy of USA crystal was found to be 1.37 GW/cm2. The electrical behaviour of the crystal was analysed from dielectric measurements. The mechanical stability revealed that the title compound is a soft material. Third-order nonlinear optical property of USA compound was analysed using standard Z-scan technique, which showed better characteristics compared to various reported comparable crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sonia, N. Vijayan, M. Vij, H. Yadav, R. Kumar, D. Sur, B. Singh, S.A. Martin Britto Dhas, S. Verma, J. Phys. Chem. Solids 129, 401–412 (2019)

  2. J. Balaji, S. Prabu, D. Sajan, P. Srinivasan, J. Mol. Struct. 1137, 142–149 (2017)

    CAS  Google Scholar 

  3. A. Suresh, N. Manikandan, RO.MU. Jauhar, P. Murugakoothan, G. Vinitha, Appl. Phys. A 124, 419 (2018)

    Google Scholar 

  4. S. Sadhasivam, N.P. Rajesh, Opt. Laser Technol. 93, 133–137 (2017)

    CAS  Google Scholar 

  5. M. Magesh, G. Bhagavannarayana, P. Ramasamy, Spectrochim. Acta Part A 150, 765–771 (2015)

    CAS  Google Scholar 

  6. P. Nagapandiselvi, C. Baby, R. Gopalakrishnan, Mater. Res. Bull. 81, 33–42 (2016)

    CAS  Google Scholar 

  7. H. Bingrong, S.U. Genbo, H.E. Youping, J. Cryst. Growth 102, 762–764 (1990)

    Google Scholar 

  8. R.I. Ristic, B.Y. Shekunov, J.N. Sherwood, J. Cryst. Growth 167, 693–700 (1996)

    CAS  Google Scholar 

  9. T. Rajalakshmi, R.S. QhalidFareed, R. Dhanasekaran, P. Ramasamy, J. Thomas, K. Srinivasan, Mater. Sci. Eng. B 39, 111–115 (1996)

    Google Scholar 

  10. A.R. Perry, M. Peruffo, P.R. Unwin, Cryst. Growth Des. 13, 614–622 (2013)

    CAS  Google Scholar 

  11. R. Mathammal, K. Sangeetha, L. Guru Prasad, V. Jayamani, Spectrochim. Acta Part A 144, 200–214 (2015)

    CAS  Google Scholar 

  12. B. Menaa, M. Takahashi, Y. Tokuda, T. Yoko, Cryst. Res. Technol. 45, 341–346 (2010)

    CAS  Google Scholar 

  13. Z. Afroz, M. Faizan, M.J. Alam, V.H.N. Rodrigues, S. Ahmad, A. Ahmad, J. Mol. Struct. 1171, 438–448 (2018)

    CAS  Google Scholar 

  14. M. Przybylek, P. Cysewski, M. Pawelec, D. Ziolkowska, M. Kobierski, J. Mol. Model 21, 49 (2015). https://doi.org/10.1007/s00894-015-2599-z

    Article  Google Scholar 

  15. C. Andal, P. Murugakoothan, Int. J. ChemTech. Res. 6, 1541–1543 (2014)

    CAS  Google Scholar 

  16. I.-N. Hsu, R.W. Gellert, J. Crystallogr. Spectrosc. Res. 13, 1 (1983)

    Google Scholar 

  17. A. Silambarasan, M. Krishna Kumar, A. Thirunavukkarasu, I. MdZahid, R. Mohan Kumar, P.R. Umarani, Spectrochem. Acta Part A 142, 101–109 (2015)

    CAS  Google Scholar 

  18. M. Amudha, R. Rajkumar, V. Thayanithi, P. Praveen Kumar, Adv. Opt. Technol. 2015, 206325 (2015). https://doi.org/10.1155/2015/206325

    Article  Google Scholar 

  19. M. Dhavamurthy, G. Peramaiyan, K. Syed Suresh Babu, R. Mohan, Appl. Phys. A 119, 155 (2015)

    CAS  Google Scholar 

  20. S. Verma, K. Ramachandra-Rao, S. Kar, K.S. Bartwal, Spectrochim. Acta Part A 153, 16–21 (2016)

    CAS  Google Scholar 

  21. P. Vinothkumar, K. Rajeswari, R. Mohan Kumar, A. Bhaskaran, Spectrochim. Acta Part A 145, 33–39 (2015)

    CAS  Google Scholar 

  22. B.K. Singh, N. Sinha, N. Singh, K. Kumar, M.K. Gupta, B. Kumar, J. Phys. Chem. Solids 71, 1774–1779 (2010)

    CAS  Google Scholar 

  23. K. MohanaPriyadarshini, A. Chandramohan, G. Anandhababu, P. Ramasamy, Optik 125, 1390–1395 (2014)

    CAS  Google Scholar 

  24. P. Rekha, G. Peramaiyan, M. NizamMohideen, R. Mohan Kumar, R. Kanagadurai, Spectrochim. Acta Part A 139, 302–306 (2015)

    CAS  Google Scholar 

  25. RO.MU. Jauhar, P. Era, V. Viswanathan, P. Vivek, G. Vinitha, D. Velmurugan, P. Murugakoothan, New J. Chem. 42, 2439 (2018)

    CAS  Google Scholar 

  26. J. Jeyaram, K. Varadharajan, B. Singaram, R. Rajendhran, J. Sci. Adv. Mater. Devices 2, 445–454 (2017)

    Google Scholar 

  27. H. Singh, G. Slathia, R. Gupta, K.K. Bamzai, AIP Conf. Proc. 1942, 100011 (2018)

    Google Scholar 

  28. D. Shalini, S. Kalainathan, V. Revathi Ambika, N. Hema, D. Jayalakshmi, J. Mol. Struct. 1148, 364–370 (2017)

    CAS  Google Scholar 

  29. C. Andal, P. Murugakoothan, Optik 125, 2713–2715 (2014)

    CAS  Google Scholar 

  30. M. Rajkumar, A. Chandramohan, J. Mol. Struct. 1134, 762–769 (2017)

    CAS  Google Scholar 

  31. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 2 (1988)

    Google Scholar 

  32. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision A. 1. Gaussian Inc., Pittsburgh PA (2003).

  33. I. Fleming, Frontier Orbital, Organic Chemical Reactions (Wiley, London, 1976)

    Google Scholar 

  34. M. Snehalatha, C. Ravikumar, I. Hubert Joe, N. Sekar, V.S. Jayakumar, Spectrochem. Acta Part A 72, 654–662 (2009)

    CAS  Google Scholar 

  35. S. Sebastian, S. Sylvestre, J. Jayabharathi, S. Ayyapan, M. Amalanathan, K. Oudayakumar, I.A. Herman, Spectrochim. Acta Part A 136, 1107–1118 (2015)

    CAS  Google Scholar 

  36. V. Balachandran, S. Rajeswari, S. Lalitha, J. Mol. Struct. 1007, 63–73 (2012)

    CAS  Google Scholar 

  37. A. Ganguly, B.K. Paul, S. Ghosh, N. Guchhait, Comput. Theor. Chem. 1018, 102–114 (2013)

    CAS  Google Scholar 

  38. K. Gayathri, P. Krishnan, P.R. Rajkumar, G. Anbalagan, Bull. Mater. Sci. 37, 1589–1595 (2014)

    CAS  Google Scholar 

  39. A.W. Coats, J.P. Redfern, Nature 201, 68–69 (1964)

    CAS  Google Scholar 

  40. RO.MU. Jauhar, P. Era, P. Vivek, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04011-4

    Article  Google Scholar 

  41. N. Vijayan, G. Bhagavannarayana, T. Kanagasekaran, R. Ramesh Babu, R. Gopalakrishnan, P. Ramasamy, Cryst. Res. Technol. 41, 784–789 (2006)

    CAS  Google Scholar 

  42. RO.MU. Jauhar, M.H. Dar, P. Vivek, D. NarayanaRao, P. Murugakoothan, J. Opt. 47, 28–34 (2018)

    Google Scholar 

  43. R. Arunkumar, D. Benny Anburaj, P. Vivek, RO.MU. Jauhar, R.K. Balachandar, S. Ananth, P. Murugakoothan, J. Opt. 47, 374–379 (2018)

    Google Scholar 

  44. P. Vivek, RO.MU. Jauhar, P. Murugakoothan, J. Opt. (2017). https://doi.org/10.1007/s12596-017-0399-9

    Article  Google Scholar 

  45. E.M. Onitsch, Mikroskopia 2, 131–151 (1947)

    Google Scholar 

  46. P. Karuppasamy, V. Sivasubramani, M. SenthilPandian, P. Ramasamy, RSC Adv. 6, 109105–109123 (2016)

    CAS  Google Scholar 

  47. K. Ramachandran, A. Raja, V. Mohankumar, M.S. Pandian, P. Ramasamy, Phys. B Condens. Matter 562, 82–93 (2019)

    CAS  Google Scholar 

  48. P. Karuppasamy, M.S. Pandian, P. Ramasamy, S. Verma, Opt. Mater. 79, 152–171 (2018)

    CAS  Google Scholar 

  49. M. Manivannan, S.A. Martin Britto Dhas, M. Jose, J. Cryst. Growth 455, 161–167 (2016)

    CAS  Google Scholar 

  50. R. Gomathi, S. Madeswaran, D. Rajan Babu, Mater. Chem. Phys. 207, 84–90 (2018)

    CAS  Google Scholar 

  51. J.H. Joshi, D.K. Kanchan, H.O. Jethva, M.J. Joshi, K.D. Parikh, Ionics 24, 1995–2016 (2018)

    CAS  Google Scholar 

  52. J.H. Joshi, G.M. Joshi, M.J. Joshi, H.O. Jethva, K.D. Parikh, New J. Chem. 42, 17227 (2018)

    CAS  Google Scholar 

  53. J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Mater. Res. Bull. 93, 63–73 (2017)

    CAS  Google Scholar 

  54. A. Suresh, N. Manikandan, G. Vinitha, Mater. Res. Express 6, 025102 (2019)

    Google Scholar 

  55. S. Yuvaraj, N. Manikandan, G. Vinitha, Opt. Mater. 73, 428–436 (2017)

    CAS  Google Scholar 

  56. M.I. Baig, M. Anis, S. Kalainathan, B. Babu, G.G. Muley, Mater. Technol. (2017). https://doi.org/10.1080/10667857.2017.1321275

    Article  Google Scholar 

  57. C. Andal, P. Murugakoothan, Int. J. ChemTech Res. 12, 70–74 (2019)

    CAS  Google Scholar 

  58. C. Indumathi, T.C. Sabari Girisun, K. Anitha, S. Alfred Cecil Raj, Opt. Mater. 60, 214–220 (2016)

    CAS  Google Scholar 

  59. S. Dhanuskodi, T.C. Sabari Girisun, N. Smijesh, R. Philip, Chem. Phys. Lett. 486, 80–83 (2010)

    CAS  Google Scholar 

  60. P.S. Patil, S.R. Maidur, S. Venugopal Rao, S.M. Dharmaprakash, Opt. Laser Technol. 81, 70–76 (2016)

    CAS  Google Scholar 

  61. T.A. Hegde, A. Dutta, T.C. Sabari Girisun, M. Abith, G. Vinitha, J. Mater. Sci. Mater. Electron. 30, 18885 (2019)

    CAS  Google Scholar 

  62. T.A. Hegde, A. Dutta, RO.MU. Jauhar, P. Karuppasamy, M. Senthil Pandian, M. Abith, T.C. Sabari Girisun, G. Vinitha, Opt. Mater. 107, 110033 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from DAE-BRNS, Government of India, though the Project Ref. No.-34/14/55/2014-BRNS/2014 during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vinitha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, A., Jauhar, R.M., Manikandan, N. et al. Experimental and computational studies on third-order urea salicylic acid single crystal for optoelectronic device applications. J Mater Sci: Mater Electron 31, 17594–17613 (2020). https://doi.org/10.1007/s10854-020-04315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04315-5

Navigation