Skip to main content

Advertisement

Log in

Mesoporous Mn-doped and carbon-coated NaTi2(PO4)3 nanocrystals as an anode material for improved performance of sodium-ion hybrid capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sodium electrochemical energy storage systems including sodium-ion battery and hybrid capacitor are attracting increasing interest in large-scale electrical energy storage due to low cost and abundant sodium resources. In particular, sodium-ion hybrid capacitor with the merits of high energy and power densities as a typical next-generation energy storage device provides a promising alternative to the currently commercial lithium-ion battery. It is highly challenging to design and prepared suitable anode materials with extraordinary performance, thereby spurring its large-scale application. Herein, mesoporous Mn-doped and carbon-coated NaTi2(PO4)3 nanocrystals are synthesized via a three-step process of solvothermal reaction, serum albumin decoration and thermal annealing. Synergistic effect rendered by NaTi2(PO4)3 particles with mesoporous structure, Mn2+ doping and ultra-thin carbon coating endows the prepared composite with facile ion/electron transportation as well as excellent reaction kinetics as an anode material for sodium-ion hybrid capacitors. In the half-cell tests, the prepared composite exhibits high reversible capacity of 116 mA h g−1 at 1 C, high-rate capability of 95 mA h g−1 at 50 C, and long-term cycling stability with high capacity of 92 mAh g−1 (88% capacity retention) after 1000 cycles at 20 C. Using the prepared composite as anode and activated carbon as cathode, the sodium-ion hybrid capacitor is assembled and it exhibits high energy/power density of 85.5 WhKg−1/5531 WKg−1. Our results indicate that Mn-doped and carbon-coated NASICON-type anodes have great potential in the sodium-based electrochemical energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)

    CAS  Google Scholar 

  2. P. Simon, Y. Gogotsi, Nanoscience and technology: a collection of reviews from nature journals, world scientific, in Materials for Electrochemical Capacitors, ed. by P. Rodgers (Macmillan publishers, UK, 2010), pp. 320–329

    Google Scholar 

  3. Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016)

    CAS  Google Scholar 

  4. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)

    CAS  Google Scholar 

  5. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)

    CAS  Google Scholar 

  6. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)

    CAS  Google Scholar 

  7. L. Croguennec, M.R. Palacin, Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 137, 3140–3156 (2015)

    CAS  Google Scholar 

  8. H. Li, L. Peng, Y. Zhu, X. Zhang, G. Yu, Achieving high-energy-high-power density in a flexible quasi-solid-state sodium ion capacitor. Nano Lett. 16, 5938–5943 (2016)

    CAS  Google Scholar 

  9. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nature Energy 1, 16070 (2016)

    CAS  Google Scholar 

  10. G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2, 213–234 (2013)

    CAS  Google Scholar 

  11. V. Aravindan, J. Gnanaraj, Y.-S. Lee, S. Madhavi, Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 114, 11619–11635 (2014)

    CAS  Google Scholar 

  12. X. Han, P. Han, J. Yao, S. Zhang, X. Cao, J. Xiong, J. Zhang, G. Cui, Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high performance lithium ion capacitors. Electrochim. Acta 196, 603–610 (2016)

    CAS  Google Scholar 

  13. Y. Ma, H. Chang, M. Zhang, Y. Chen, Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 27, 5296–5308 (2015)

    CAS  Google Scholar 

  14. P. Wang, R. Wang, J. Lang, X. Zhang, Z. Chen, X. Yan, Porous niobium nitride as a capacitive anode material for advanced Li-ion hybrid capacitors with superior cycling stability. J. Mater. Chem. A 4, 9760–9766 (2016)

    CAS  Google Scholar 

  15. R. Wang, J. Lang, P. Zhang, Z. Lin, X. Yan, Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv. Funct. Mater. 25, 2270–2278 (2015)

    CAS  Google Scholar 

  16. R. Thangavel, K. Kaliyappan, K. Kang, X. Sun, Y.S. Lee, Going beyond lithium hybrid capacitors: proposing a new high-performing sodium hybrid capacitor system for next-generation hybrid vehicles made with bio-inspired activated carbon. Adv. Energy Mater. 6, 1502199 (2016)

    Google Scholar 

  17. J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015)

    CAS  Google Scholar 

  18. K. Karthikeyan, S. Amaresh, K. Kim, S. Kim, K. Chung, B. Cho, Y. Lee, A high performance hybrid capacitor with Li2CoPO4F cathode and activated carbon anode. Nanoscale 5, 5958–5964 (2013)

    CAS  Google Scholar 

  19. K. Karthikeyan, S. Amaresh, S.N. Lee, X. Sun, V. Aravindan, Y.G. Lee, Y.S. Lee, Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons. Chemsuschem 7, 1435–1442 (2014)

    CAS  Google Scholar 

  20. H. Kim, M.Y. Cho, M.H. Kim, K.Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3, 1500–1506 (2013)

    CAS  Google Scholar 

  21. J. Yin, L. Qi, H. Wang, Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors. ACS Appl. Mater. Interfaces 4, 2762–2768 (2012)

    CAS  Google Scholar 

  22. B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26, 3854–3859 (2014)

    CAS  Google Scholar 

  23. K. Chihara, A. Kitajou, I.D. Gocheva, S. Okada, J.-I. Yamaki, Cathode properties of Na3M2(PO4)2F3 [M= Ti, Fe, V] for sodium-ion batteries. J. Power Sour. 227, 80–85 (2013)

    CAS  Google Scholar 

  24. H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6, 1600943 (2016)

    Google Scholar 

  25. G. Xu, X. Liu, S. Huang, L. Li, X. Wei, J. Cao, L. Yang, P.K. Chu, Freestanding, hierarchical, and porous bilayered NaxV2O5·nH2O/rGO-CNT composite as high-performance cathode materials for nonaqueous K-ion batteries and aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 12, 706–716 (2020)

    CAS  Google Scholar 

  26. K.R. Reddy, B.C. Sin, C.H. Yoo et al., A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scr. Mater. 58(11), 1010–1013 (2008)

    CAS  Google Scholar 

  27. K. Saravanan, C.W. Mason, A. Rudola, K.H. Wong, P. Balaya, The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 3, 444–450 (2013)

    CAS  Google Scholar 

  28. G. Pang, C. Yuan, P. Nie, B. Ding, J. Zhu, X. Zhang, Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale 6, 6328–6334 (2014)

    CAS  Google Scholar 

  29. N. Li, Y. Wang, R. Rao, X. Dong, X. Zhang, S. Zhu, The preparation and graphene surface coating NaTi2(PO4)3 as cathode material for lithium ion batteries. Appl. Surf. Sci. 399, 624–629 (2017)

    CAS  Google Scholar 

  30. Y.H. Jung, C.H. Lim, D.K. Kim, Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries. J. Mater. Chem. A 1, 11350–11354 (2013)

    CAS  Google Scholar 

  31. F. Liu, X. Sun, Y. Liu, X. Song, J. Gao, G. Qin, TiO2 nanorods confined in porous V2O5 nanobelts and interconnected carbon channels for sodium ion batteries. Appl. Surf. Sci. 473, 873–884 (2019)

    CAS  Google Scholar 

  32. C.V. Reddy, I.N. Reddy, B. Akkinepally et al., Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode. J. Alloy. Compd. 814, 152349 (2020)

    Google Scholar 

  33. V.N. Rao, N.L. Reddy, M.M. Kumari et al., Photocatalytic recovery of H2 from H2S containing wastewater: surface and interface control of photo-excitons in Cu2S@TiO2 core-shell nanostructures. Appl. Catal. B 254, 174–185 (2019)

    Google Scholar 

  34. T. Wei, G. Yang, C. Wang, Iso-oriented NaTi2(PO4)3 mesocrystals as anode material for high-energy and long-durability sodium-ion capacitor. ACS Appl. Mater. Interfaces 9, 31861–31870 (2017)

    CAS  Google Scholar 

  35. P. Wei, Y. Liu, Z. Wang, Y. Huang, Y. Jin, Y. Liu, S. Sun, Y. Qiu, J. Peng, Y. Xu, Porous NaTi2(PO4)3/C hierarchical nanofibers for ultrafast electrochemical energy storage. ACS Appl. Mater. Interfaces 10, 27039–27046 (2018)

    CAS  Google Scholar 

  36. X. Liu, G. Xu, H. Xiao, X. Wei, L. Yang, Free-standing hierarchical porous assemblies of commercial TiO2 nanocrystals and multi-walled carbon nanotubes as high-performance anode materials for sodium ion batteries. Electrochim. Acta 236, 33–42 (2017)

    CAS  Google Scholar 

  37. H. Kim, H. Lim, H.-S. Kim, K.J. Kim, D. Byun, W. Choi, Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries. Nano Res. 12, 397–404 (2019)

    CAS  Google Scholar 

  38. F. Wu, Y. Ye, R. Chen, T. Zhao, J. Qian, X. Zhang, L. Li, Q. Huang, X. Bai, Y. Cui, Gluing carbon black and sulfur at nanoscale: a polydopamine-based “nano-binder”for double-shelled sulfur cathodes. Adv. Energy Mater. 7, 1601591 (2017)

    Google Scholar 

  39. S. Wang, J. Liao, X. Yang, J. Liang, Q. Sun, J. Liang, F. Zhao, A. Koo, F. Kong, Y. Yao, Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy 57, 230–240 (2019)

    CAS  Google Scholar 

  40. Z. Jiang, J. Zhu, Y. Li, Z. He, W. Meng, Y. Jiang, L. Dai, L. Wang, Effect of Sn doping on the electrochemical performance of NaTi2(PO4)3/C composite. Ceram. Int. 44, 15646–15652 (2018)

    CAS  Google Scholar 

  41. M. Aragón, C. Vidal-Abarca, P. Lavela, J. Tirado, High reversible sodium insertion into iron substituted Na1+xTi2−xFex(PO4)3. J. Power Sour. 252, 208–213 (2014)

    Google Scholar 

  42. G. Xu, Z. Chen, X. Liu, Y. Zhang, X. Wei, L. Yang, P.K. Chu, Simultaneous texturing and conductivity tailoring of mesoporous NaTi2(PO4)3 nanocrystals by gadolinium doping for enhanced Na storage. Electrochim. Acta 309, 177–186 (2019)

    CAS  Google Scholar 

  43. W. Shen, H. Li, Z. Guo, Z. Li, Q. Xu, H. Liu, Y. Wang, Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries. RSC Adv. 6, 71581–71588 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 11774298, 51472209 and 11474242), Natural Science Foundation of Hunan Province (No. 2020JJ4088) and Innovation-Driven Project of Xiangtan University (XDCX2019B065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobao Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, D., Chen, Z., Xu, G. et al. Mesoporous Mn-doped and carbon-coated NaTi2(PO4)3 nanocrystals as an anode material for improved performance of sodium-ion hybrid capacitors. J Mater Sci: Mater Electron 31, 17550–17562 (2020). https://doi.org/10.1007/s10854-020-04310-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04310-w

Navigation