Skip to main content
Log in

Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle Marmelos extract as a fuel: catalytic, electrochemical, and microbial applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Today, due to industrialization and urbanization, the world is facing serious water shortage and environmental alarms. The reusability of polluted water could be a promising approach for the sustainable wastewater management strategy. In the view, the present work compiles the synthesis of zinc ferrite (ZnFe2O4) nanoparticles by a simple, economic, and eco-friendly route. The investigation of structural properties, thermal properties, and optical properties was carried out successfully by standard characterization techniques. The X-ray diffraction patterns confirmed the spinel-cubic lattice with Fd-3m space group for all the samples. The presence of vibrational frequency modes of Zn–O and Fe–O was ensured by FTIR spectra. The nano-size, morphology, atomic percentage, and some agglomeration of the nanoparticles were revealed by SEM–EDX and TEM images. The bandgap values were calculated from UV–Visible analysis data, and found to be 2.36 eV. The distribution of pore size by BJH method and BET surface area was evaluated by Nitrogen adsorption–desorption isotherms, and is found to be 19.74 m2/g. The thermogravimetric and differential thermal analysis affirmed percentage of weight loss and phase formation. The photocatalytic activity of methylene blue was evaluated under visible light and the removal efficiency of 96% and nano-catalyst shows active reusability. The cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used for the study of electrochemical properties of nanoparticles. Further, the antimicrobial activity of the nanoparticles was investigated using Gram-positive, Gram-negative bacteria and some selected fungi strains. The obtained results revealed that the newly synthesized ZnFe2O4 can act as potential photocatalyst, electrochemical sensor, and antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E.M. Dias, C. Petit, Towards the use of metal-organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J. Mater. Chem. A 3, 22484–22506 (2015). https://doi.org/10.1039/c5ta05440k

    Article  CAS  Google Scholar 

  2. S.R. Patade, D.D. Andhare, S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, K.M. Jadhav, Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.07.029

    Article  Google Scholar 

  3. A. Manuscript, Mater. Adv. (2020). https://doi.org/10.1039/D0MA00251H

    Article  Google Scholar 

  4. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K.M. Jadhav, Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram. Int. 46, 8640–8650 (2020). https://doi.org/10.1016/j.ceramint.2019.12.097

    Article  CAS  Google Scholar 

  5. S.A. Jadhav, S.B. Somvanshi, M.V. Khedkar, S.R. Patade, K.M. Jadhav, Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. J. Mater. Sci. Mater. Electron. 31, 11352–11365 (2020). https://doi.org/10.1007/s10854-020-03684-1

    Article  CAS  Google Scholar 

  6. P. Guo, L. Cui, Y. Wang, M. Lv, B. Wang, X.S. Zhao, Facile synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties. Langmuir 29, 8997–9003 (2013)

    Article  CAS  Google Scholar 

  7. S. Mahvidi, M. Gharagozlou, M. Mahdavian, S. Naghibi, Potency of ZnFe2O4 nanoparticles as corrosion inhibitor for stainless steel; the pigment extract study. Mater. Res. 20, 1492–1502 (2017)

    Article  CAS  Google Scholar 

  8. S. Mandal, S. Natarajan, A. Tamilselvi, S. Mayadevi, Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: a magnetically recyclable catalyst for water/wastewater treatment. J. Environ. Chem. Eng. 4, 2706–2712 (2016)

    Article  CAS  Google Scholar 

  9. D. Maiti, A. Saha, P.S. Devi, Surface modified multifunctional ZnFe2O4 nanoparticles for hydrophobic and hydrophilic anti-cancer drug molecule loading. Phys. Chem. Chem. Phys. 18, 1439–1450 (2016)

    Article  CAS  Google Scholar 

  10. G. Ma, Y. Chen, L. Li, D. Jiang, R. Qiao, Y. Zhu, An attractive photocatalytic inorganic antibacterial agent: preparation and property of graphene/zinc ferrite/polyaniline composites. Mater. Lett. 131, 38–41 (2014)

    Article  CAS  Google Scholar 

  11. S.B. Somvanshi, P.B. Kharat, M.V. Khedkar, K.M. Jadhav, Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications. Ceram. Int. 46, 7642–7653 (2020). https://doi.org/10.1016/j.ceramint.2019.11.265

    Article  CAS  Google Scholar 

  12. S.B. Somvanshi, P.B. Kharat, T.S. Saraf, S.B. Somwanshi, S.B. Shejul, K.M. Jadhav, Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater. Res. Innov. 00, 1–6 (2020). https://doi.org/10.1080/14328917.2020.1769350

    Article  CAS  Google Scholar 

  13. H. Liu, Y. Guo, Y. Zhang, F. Wu, Y. Liu, D. Zhang, Synthesis and properties of ZnFe2O4 replica with biological hierarchical structure. Mater. Sci. Eng. B 178, 1057–1061 (2013)

    Article  CAS  Google Scholar 

  14. X. Hangxun, B.W. Zeiger, K.S. Suslick, Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42, 2555–2567 (2013). https://doi.org/10.1039/c2cs35282f

    Article  CAS  Google Scholar 

  15. C.G. Anchieta, D. Sallet, E.L. Foletto, S. Syllos, O. Chiavone-filho, A.O. Claudio, Synthesis of ternary zinc spinel oxides and their application in the photodegradation of organic pollutant. Ceram. Int. 40, 4173–4178 (2014). https://doi.org/10.1016/j.ceramint.2013.08.074

    Article  CAS  Google Scholar 

  16. Z. Zhong-wei, O. Kingsam, W. Ming, Structural macrokinetics of synthesizing ZnFe2O4 by mechanical ball milling. Trans. Nonferrous Met. Soc. China. 20, 1131–1135 (2010). https://doi.org/10.1016/S1003-6326(09)60267-3

    Article  CAS  Google Scholar 

  17. V.L. Ranganatha, K.S. Nithin, S.A. Khanum, G. Nagaraju, C. Mallikarjunaswamy, Zinc oxide nanoparticles: a significant review on synthetic strategies, characterization and applications, in: AIP Conf. Proc., AIP Publishing, (2019), p. 20089.

  18. C. Mallikarjunaswamy, V. Lakshmi Ranganatha, R. Ramu, Udayabhanu, G. Nagaraju, Facile microwave-assisted green synthesis of ZnO nanoparticles: application to photodegradation, antibacterial and antioxidant. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02612-2

    Article  Google Scholar 

  19. A. Bardhan, C.K. Ghosh, M.K. Mitra, G.C. Das, S. Mukherjee, K.K. Chattopadhyay, Low temperature synthesis of zinc ferrite nanoparticles. Solid State Sci. 12, 839–844 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.02.007

    Article  CAS  Google Scholar 

  20. L. Han, X. Zhou, L. Wan, Y. Deng, S. Zhan, Synthesis of ZnFe2O4 nanoplates by succinic acid-assisted hydrothermal route and their photocatalytic degradation of rhodamine B under visible light. J. Environ. Chem. Eng. 2, 123–130 (2014)

    Article  CAS  Google Scholar 

  21. X. Huang, J. Zhang, S. Xiao, T. Sang, G. Chen, Unique electromagnetic properties of the zinc ferrite nanofiber. Mater. Lett. 124, 126–128 (2014)

    Article  CAS  Google Scholar 

  22. O.V. Yelenich, S.O. Solopan, T.V. Kolodiazhnyi, V.V. Dzyublyuk, A.I. Tovstolytkin, A.G. Belous, Magnetic properties and high heating ef fi ciency of ZnFe2O4 nanoparticles. Mater. Chem. Phys. 146, 129–135 (2014). https://doi.org/10.1016/j.matchemphys.2014.03.010

    Article  CAS  Google Scholar 

  23. G. Sangeetha, S. Rajeshwari, R. Venckatesh, Green synthesis of zinc oxide nanoparticles by aloe Barbadensis miller leaf extract: structure and optical properties. Mater. Res. Bull. 46, 2560–2566 (2011)

    Article  CAS  Google Scholar 

  24. R. Rathnasamy, P. Thangasamy, R. Thangamuthu, S. Sampath, V. Alagan, Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. J. Mater. Sci. Mater. Electron. 28, 10374–10381 (2017)

    Article  CAS  Google Scholar 

  25. B. Siripireddy, B.K. Mandal, Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv. Powder Technol. 28, 785–797 (2017)

    Article  CAS  Google Scholar 

  26. Y. Zheng, L. Fu, F. Han, A. Wang, W. Cai, J. Yu, J. Yang, F. Peng, Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chem. Lett. Rev. 8, 59–63 (2015)

    Article  CAS  Google Scholar 

  27. T. Karnan, S.A.S. Selvakumar, Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J. Mol. Struct. 1125, 358–365 (2016)

    Article  CAS  Google Scholar 

  28. C.A. Soto-Robles, O.J. Nava, A.R. Vilchis-Nestor, A. Castro-Beltrán, C.M. Gómez-Gutiérrez, E. Lugo-Medina, A. Olivas, P.A. Luque, Biosynthesized zinc oxide using Lycopersicon esculentum peel extract for methylene blue degradation. J. Mater. Sci. Mater. Electron. 29, 3722–3729 (2018)

    Article  CAS  Google Scholar 

  29. M. Sriramulu, D. Shukla, S. Sumathi, Aegle marmelos leaves extract mediated synthesis of zinc ferrite: antibacterial activity and drug delivery. Mater. Res. Express. 5, 115404 (2018). https://doi.org/10.1088/2053-1591/aadd88

    Article  CAS  Google Scholar 

  30. S.G. Shingade, S.B. Bari, U.B. Waghmare, Synthesis and antimicrobial activity of 5-chloroindoline-2, 3-dione derivatives. Med. Chem. Res. 21, 1302–1312 (2012)

    Article  CAS  Google Scholar 

  31. S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, S.D. More, K.M. Jadhav, Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites. Ceram. Int. 46, 13170–13179 (2020). https://doi.org/10.1016/j.ceramint.2020.02.091

    Article  CAS  Google Scholar 

  32. S. Sun, X. Yang, Y. Zhang, F. Zhang, J. Ding, J. Bao, C. Gao, Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Prog. Nat. Sci. Mater. Int. 22, 639–643 (2012)

    Article  Google Scholar 

  33. C. Liu, Y. Ni, L. Zhang, F. Guo, T. Wu, Simple solution-combusting synthesis of octahedral ZnFe2O4 nanocrystals and additive-promoted photocatalytic performance. RSC Adv. 4, 47402–47408 (2014)

    Article  CAS  Google Scholar 

  34. M.N.Z. Ahmed, K.B. Chandrasekhar, A.A. Jahagirdar, H. Nagabhushana, B.M. Nagabhushana, Photocatalytic activity of nanocrystalline ZnO, α-Fe2O3 and ZnFe2O4/ZnO. Appl. Nanosci. 5, 961–968 (2015)

    Article  Google Scholar 

  35. C. Singh, S. Jauhar, V. Kumar, J. Singh, S. Singhal, Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mater. Chem. Phys. 156, 188–197 (2015)

    Article  CAS  Google Scholar 

  36. X. Cao, L. Gu, X. Lan, C. Zhao, D. Yao, W. Sheng, Spinel ZnFe2O4 nanoplates embedded with Ag clusters: preparation, characterization, and photocatalytic application. Mater. Chem. Phys. 106, 175–180 (2007)

    Article  CAS  Google Scholar 

  37. S.B. Patil, H.S.B. Naik, G. Nagaraju, R. Viswanath, S.K. Rashmi, Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: application to degradation of mixed dyes and antibacterial activities. Mater. Chem. Phys. 212, 351–362 (2018)

    Article  CAS  Google Scholar 

  38. B.S. Surendra, Green engineered synthesis of Ag-doped CuFe2O4: characterization, cyclic voltammetry and photocatalytic studies. J. Sci. Adv. Mater. Dev. 3, 44–50 (2018)

    Google Scholar 

  39. B.S. Surendra, H.P. Nagaswarupa, M.U. Hemashree, J. Khanum, Jatropha extract mediated synthesis of ZnFe2O4 nanopowder: excellent performance as an electrochemical sensor, UV photocatalyst and an antibacterial activity. Chem. Phys. Lett. 739, 136980 (2020)

    Article  CAS  Google Scholar 

  40. N. Matinise, K. Kaviyarasu, N. Mongwaketsi, S. Khamlich, L. Kotsedi, N. Mayedwa, M. Maaza, Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa oleifera natural extract for electrochemical applications. Appl. Surf. Sci. 446, 66–73 (2018)

    Article  CAS  Google Scholar 

  41. B.S. Surendra, M. Veerabhdraswamy, K.S. Anantharaju, H.P. Nagaswarupa, S.C. Prashantha, Green and chemical-engineered CuFe2O4: characterization, cyclic voltammetry, photocatalytic and photoluminescent investigation for multifunctional applications. J. Nanostruct. Chem. 8, 45–59 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Lakshmi Ranganatha V gratefully acknowledges the financial support provided by the NIE Management through NIE-CRD project to carry out this research work. Dr. G. Nagaraju thanks DST Nanomission, Government of India, New Delhi, for financial support (No. SR/NM/NS-1262/2013 (G) dated 18-03-2015). Dr. Mallikarjunaswamy C and Ms. Pramila S acknowledge the JSS College of Arts, Commerce and Science for providing the laboratory facility. Further, also acknowledge ‘DSC-SAIF Cochin’ Cochin University of Science and Technology for instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mallikarjunaswamy.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmi Ranganatha, V., Pramila, S., Nagaraju, G. et al. Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle Marmelos extract as a fuel: catalytic, electrochemical, and microbial applications. J Mater Sci: Mater Electron 31, 17386–17403 (2020). https://doi.org/10.1007/s10854-020-04295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04295-6

Navigation