Skip to main content

Advertisement

Log in

The green approach of ZnO NPs and its Antioxidant, hemolytic, and photocatalytic activity and functionalized r-GO-ZnO for energy storage application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper describes the green synthesis of Zinc oxide nanoparticles (ZnO NPs) from the flowers of L. nepetifolia. Zinc oxide nanoparticles have gained more interest from researchers due to their wide applications from biological activity to energy storage system. The synthesis of ZnO nanoparticles and examined by using Ultraviolet–visible spectroscopy, Fourier Transform-Infrared spectroscopy, X-ray Diffraction analysis, Dynamic Light Scattering analysis, Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy, BET, XPS, Transmission Electron Microscopy, and Thermogravimetric Analysis. The photocatalytic studies were followed using methylene blue (MB) dye by ZnO nanoparticles by using sunlight as a source. The degradation of MB dye is found to be 90% within 70 min. Then the synthesized ZnO nanoparticles help to evaluate the antioxidant activities against Nitric oxide, Hydrogen peroxide, and DPPH free radicals. Moreover, the synthesized ZnO NPs show good biocompatibility nature, and the electrochemical analysis of reduced Graphene Oxide with Zinc oxide (rGO-ZnO) nanocomposite shows that the prepared rGO-ZnO nanocomposite has a high specific capacitance of about 667 F g−1 in comparison with the pure Zinc oxide nanoparticles (200 F g−1) and has good cycling stability over 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and /or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, M. Shobiya, Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications. Biomed. Pharmacother. 84, 1213–1222 (2016)

    Article  CAS  Google Scholar 

  2. J. Yan, J. Wang, L. Zhu, J. Wu, Green synthesis and characterization of zinc oxide nanoparticles using carboxylic curdlan and their interaction with bovine serum albumin. RSC Adv. 6, 77752–77759 (2016)

    Article  CAS  Google Scholar 

  3. A.N. Deva Krupa, R. Vimala, Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized Zinc oxide nanoparticles for combating microfouling. Mater. Sci. Eng. C. 61, 728–735 (2016)

    Article  Google Scholar 

  4. F.T. Thema, E. Manikandan, M.S. Dhlamini, M. Maaza, Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater Lett. 161, 124–127 (2015)

    Article  CAS  Google Scholar 

  5. F.M. Arvanaga, A. Bayramia, A. Habibi-Yangjehb, S.R. Pouran, A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybum marianum L seed extract. Mater. Sci. Eng C. 97, 397–405 (2019)

    Article  Google Scholar 

  6. K. Muhil Eswari, S. Asaithambi, M. Karuppaiah, P. Sakthivel, V. Balaji, D.K. Ponelakkia, R. Yuvakkumar, P. Kumar, N. Vijayaprabhu, G. Ravi, Green synthesis of ZnO nanoparticles using Abutilon Indicum and Tectona Grandis leaf extracts for evaluation of anti-diabetic, anti-inflammatory and in-vitro cytotoxicity activities. Ceram. Int. 48(22), 33624–33634 (2022). https://doi.org/10.1016/j.ceramint.2022.07.308

    Article  CAS  Google Scholar 

  7. Vaikundamoorthy Ramalingam, Pavithra Muthukumar Sathya, Thimmarayan Srivalli, Harshavardhan Mohan, Synthesis of quercetin functionalized wurtzite type zinc oxide nanoparticles and their potential to regulate intrinsic apoptosis signaling pathway in human metastatic ovarian cancer. Life Sci. 309, 121022 (2022). https://doi.org/10.1016/j.lfs.2022.121022

    Article  CAS  Google Scholar 

  8. M.S.S. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M.L. Grilli, M. Khosravy, T. Senjyu, A systematic review of metal oxide applications for energy and environmental sustainability. Metals 10(12), 1604 (2020). https://doi.org/10.3390/met10121604

    Article  CAS  Google Scholar 

  9. B.E. Al-Jumaili, Fabrication and photoresponsive characteristics of ZnO film for ultraviolet ZnO/porous Si photodetector: The effect of post-processing treatment. Opt. Mater. 133, 112897 (2022). https://doi.org/10.1016/j.optmat.2022.112897

    Article  CAS  Google Scholar 

  10. M. Busilă, V. Musat, R. Dinică, D. Tutunaru, A. Pantazi, D. Dorobantu, D.C. Culită, M. Enăchescu, Antibacterial and photocatalytic coatings based on Cu-Doped ZnO nanoparticles into microcellulose matrix. Materials 15(21), 7656 (2022). https://doi.org/10.3390/ma15217656

    Article  CAS  Google Scholar 

  11. Maha G. Batterjee, Arshid Nabi, Majid Rasool Kamli, Khalid Ahmed Alzahrani, Ekram Y. Danish, Maqsood Ahmad Malik, Green hydrothermal synthesis of zinc oxide nanoparticles for UV-light-induced photocatalytic degradation of ciprofloxacin antibiotic in an aqueous environment. Catalysts 12(11), 1347 (2022). https://doi.org/10.3390/catal12111347

    Article  CAS  Google Scholar 

  12. M.E. Awatif, Omran, Characterization of green route synthesized zinc oxide nanoparticles using Cyperus rotundus rhizome extract: Antioxidant, antibacterial, anticancer, and photocatalytic potential. J. Drug Deliv. Sci. Technol. 9, 104000 (2022). https://doi.org/10.1016/j.jddst.2022.104000

    Article  CAS  Google Scholar 

  13. F. Rahman, M.A. Majed Patwary, M.A. Bakar Siddique, M.S. Bashar, M.A. Haque, B. Akter, R. Rashid, M.A. Haque, A.K.M. Royhan Uddin, Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: characterization, antimicrobial, antioxidant and photocatalytic activity. Royal Soc. Open Sci. (2022). https://doi.org/10.1098/rsos.220858

    Article  Google Scholar 

  14. Tarek M. Abdelghany, Aisha M. H. Al-Rajhi, Reham Yahya, Marwah M. Bakri, Mohamed A. Al, Rana Yahya Abboud, Husam Qanash, Abdulrahman S. Bazaid, Salem S. Salem, Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conv. Bioref. 12, 5 (2022). https://doi.org/10.1007/s13399-022-03412-1

    Article  CAS  Google Scholar 

  15. S.O. Ogunyemi, Y. Abdallah, M. Zhang, H. Fouad, X. Hong, E. Ibrahim, M.I.A. Masum, A. Hossain, Jianchu Mo, Bin Li, Green synthesis of Zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. Oryzae. Artif Cells Nanomed. Biotechnol. 47, 341–352 (2019)

    Article  CAS  Google Scholar 

  16. H. Agarwal, S. Venkat Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resour-Effi Technol. 3, 406–413 (2017)

    Google Scholar 

  17. J.T. Adeleke, V. Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe, A.B. Alabi, Photocatalytic degradation of methylene blue by ZnO/ NiFe2O4 nanoparticles. Appl. Surf. Sci. 455, 195–200 (2018)

    Article  CAS  Google Scholar 

  18. F. Davar, A. Majedi, A. Mirzaei, Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. J. Am. Ceram. Soc. 98, 1739–1746 (2015)

    Article  CAS  Google Scholar 

  19. T.V. Surendra, S.M. Roopan, M.V. Arasu, N.A. Al-Dhabi, M. Sridharan, Phenolic compounds in drumstick peel for the evaluation of antibacterial, hemolytic and photocatalytic activities. J. Photochem. Photobiol. B: Bio. 161, 463–471 (2016)

    Article  CAS  Google Scholar 

  20. P. Thatoi, R. Kerry, S. Gouda, G. Das, K. Pramanik, H. Thatoi, J. Patra, Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B: Bio. 163, 311–318 (2016)

    Article  CAS  Google Scholar 

  21. R. Javed, M. Usman, S. Tabassum, M. Zia, Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles. Appl Surf Sci. 386, 319–326 (2016)

    Article  CAS  Google Scholar 

  22. M.V. Arasua, A. Madankumarb, J. Theerthagiric, S. Sallad, S. Prabu, Synthesis and characterization of ZnO nanoflakes anchored carbon nanoplates for antioxidant and anticancer activity in MCF7 cell lines. Mater. Sci. Eng C. 102, 536–540 (2019)

    Article  Google Scholar 

  23. G. Sharmila, M. Thirumarimurugan, C. Muthukumaran, Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem. J. 145, 578–587 (2019)

    Article  CAS  Google Scholar 

  24. R.S. Ray, B. Sarma, M. Misra, Random shaped ZnO supported on a porous substrate as supercapacitor. Mater. Lett. 155, 102–105 (2015)

    Article  CAS  Google Scholar 

  25. D. Ponnamma, J.-J. Cabibihan, M. Rajan, S. Sundar Pethaiah, K. Deshmukh, J.P. Gogoi, S.K. Khadheer Pasha, M. Basheer Ahamed, J. Krishnegowda, B.N. Chandrashekar, A. Reddy Plu, C. Cheng, Synthesis, optimization and applications of ZnO/Polymer nanocomposites. Mater. Sci. Eng C. 98, 1210–1240 (2019)

    Article  CAS  Google Scholar 

  26. H. Raj Pant, B. Pant, H. Joo Kim, A. Amarjargal, C. Hee Park, L.D. Tijing, E. Kyo Kim, C. Sang Kim, A green and facile one-pot synthesis of Ag-ZnO/RGO nanocomposite with effective photocatalytic activity for removal of organic pollutants. Ceram. Inter. 39, 5083–5091 (2013)

    Article  CAS  Google Scholar 

  27. I.Y.Y. Bu, R. Huang, One-pot synthesis of ZnO/reduced graphene oxide nanocomposite for supercapacitor applications. Mater. Sci. Semiconduct. Process. 31, 131–138 (2015)

    Article  CAS  Google Scholar 

  28. Y. Haldoria, W. Voit, J.-J. Shim, Nano ZnO@reduced graphene oxide composite for high performances supercapacitor: green synthesis in supercritical fluid. Electrochim. Acta. 120, 65–72 (2014)

    Article  Google Scholar 

  29. J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S.A. Suthanthiraraj, R. Jayavel, D. Nedumaran, Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. J. Inorg. Organomet. Polym. Mater. 28, 2046–2055 (2018)

    Article  CAS  Google Scholar 

  30. K. Elumalai, S. Velmurugan, Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci. 345, 329–336 (2015)

    Article  CAS  Google Scholar 

  31. R. Dobrucka, J. Długaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci. 23, 517–523 (2016)

    Article  CAS  Google Scholar 

  32. K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan, S. Ashokkumar, Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim. Acta.:Part A: Mol. Biomol. Spectrosc. 143, 158–164 (2015)

    Article  CAS  Google Scholar 

  33. A.A. Barzinjy, H.H. Azeez, Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2, 1–14 (2020)

    Article  Google Scholar 

  34. R. Ramanarayanan, N.M. Bhabhina, M.V. Dharsana, C.V. Nivedita, S. Sindhu, Green synthesis of zinc oxide nanoparticles using extract of Averrhoa bilimbi(L) and their photoelectrode applications. Mater Today: Proceed. 5, 16472–16477 (2018)

    CAS  Google Scholar 

  35. T. Karnan, S.A.S. Selvakumar, Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J. Molecul Struc. 1125, 358–365 (2016)

    Article  CAS  Google Scholar 

  36. H. Abdul Salam, R. Sivaraj, R. Venckatesh, Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth-Lamiaceae leaf extract. Mater Lett. 131, 16–18 (2014)

    Article  CAS  Google Scholar 

  37. S. Alamdari, M. Ghamsari, C. Lee, W. Han, H. Park, M.J. Tafreshi, H. Afarideh, M.H. Ara, Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl. Sci. 10, 1–19 (2020)

    Article  Google Scholar 

  38. H. Chandra, D. Patel, P. Kumari, J.S. Jangwan, S. Yadav, Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater Sci. Eng C. 102, 212–220 (2019)

    Article  CAS  Google Scholar 

  39. M. Sundrarajan, S. Ambika, K. Bharathi, Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 26, 1294–1299 (2015)

    Article  CAS  Google Scholar 

  40. A. Diallo, B.D. Ngom, E. Park, M. Maaza, Green synthesis of ZnO nanoparticles by Aspalathus linearis: structural & optical properties. J. Alloy Compd. 646, 425–430 (2015)

    Article  CAS  Google Scholar 

  41. M. Silambarasan, S. Saravanan, T. Soga, Raman and photoluminescence studies of Ag and Fe-doped ZnO nanoparticles. Int. J. ChemTech Res. 7, 1644–1650 (2015)

    Google Scholar 

  42. A. Erazo, S. Mosquera, J.E. Rodríguez-Paez, Synthesis of ZnO nanoparticles with different morphology: study of their antifungal effect on strains of Aspergillus niger and Botrytis cinerea. Mater. Chem. Phys. 234, 172–184 (2019)

    Article  CAS  Google Scholar 

  43. M.S. Geetha, H. Nagabhushana, H.N. Shivananjaiah, Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J. Sci: Adv Mater. Dev. 1, 301–310 (2016)

    Google Scholar 

  44. R. Pandimurugan, S. Thambidurai, Novel seaweed capped ZnO nanoparticles for effective dye photodegradation and antibacterial activity. Adv Powder Technol. 27, 1062–1072 (2016)

    Article  CAS  Google Scholar 

  45. D. Sharma, M. Sabela, S. Kanchi, P. Mdluli, G. Singh, T.A. Stenstrom, K. Bisetty, Biosy21nthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J. Photochem. Photobiol. B: Bio. 162, 199–207 (2016)

    Article  CAS  Google Scholar 

  46. N.S. Pavithra, K. Lingaraju, G.K. Raghu, G. Nagaraju, Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim. Acta. Part A: Mol. Biomol. Spectrosc. 185, 11–19 (2017)

    Article  CAS  Google Scholar 

  47. P.P. Mahamuni, P.M. Patil, M.J. Dhanavade, M.V. Badiger, P.G. Shadija, A.C. Lokhande, R.A. Bohara, Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophy. Rep. 17, 71–80 (2019)

    Google Scholar 

  48. D. Badma Priya, D. Thirumalai, I.V. Asharani, Influence of synthetic parameters on the enhanced photocatalytic properties of ZnO nanoparticles for the degradation of organic dyes: a green approach. Mater. Sci.: Mater. Electron. 32, 9956–9971 (2021)

    CAS  Google Scholar 

  49. S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, V.N. Kalpana, G. Rajalakshmi, M. Alsehli, A. Elfasakhany, A. Pugazhendhi, Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). J. Environ. Chem. Eng. 9, 105772 (2021). https://doi.org/10.1016/j.jece.2021.105772

    Article  CAS  Google Scholar 

  50. H. Sadiq, F. Sher, S. Sehar, E.C. Lima, S. Zhang, H.M.N. Iqbal, F. Zafar, M. Nuhanovic, Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J. Mol. Liq. 335, 116567 (2021). https://doi.org/10.1016/j.molliq.2021.116567

    Article  CAS  Google Scholar 

  51. T.S. Aldeen, H.E.A. Mohamed, M. Maaza, ZnO nanoparticles prepared via a green synthesis approach: physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids 160, 110313 (2022). https://doi.org/10.1016/j.jpcs.2021.110313

    Article  CAS  Google Scholar 

  52. S. Venkatesan, S. Suresh, P. Ramu, J. Arumugam, S. Thambidurai, N. Pugazhenthiran, Methylene blue dye degradation potential of zinc oxide nanoparticles bioreduced using Solanum trilobatum leaf extract. Res. Chem. 4, 100637 (2022)

    CAS  Google Scholar 

  53. C. Kalaiarasi, P.S. Pragathiswaran, Green chemistry approach for the functionalization of reduced graphene and ZnO as efficient supercapacitor application. J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2021.130704

    Article  Google Scholar 

  54. S. Yadav, N. Rani, K. Saini, Green synthesis of ZnO and CuO NPs using Ficus benghalensis leaf extract and their comparative study for electrode materials for high performance supercapacitor application. Materi. Today: Proc. 49, 2124–2130 (2022)

    CAS  Google Scholar 

  55. J. Li et al., Green synthesis of cellulose/graphene oxide/ZIF8 derived highly conductivity integrated film electrode for supercapacitor. Carbon 185, 599–607 (2021)

    Article  CAS  Google Scholar 

  56. K.S. Lee, I. Phiri, J.H. Park, J.M. Ko, S.H. Kim, Novel structure of bacteria doped ZnO particles: facile and green synthesis route to prepare hybrid material for supercapacitor. J. Ind. Eng. Chem. 97, 250–255 (2021)

    Article  CAS  Google Scholar 

  57. Yunfu Liu, Guohui Liu, Green synthesis and electrochemical performances of ZnO/graphene Nanocomposites. Ionics 28, 3547–3555 (2022)

    Article  CAS  Google Scholar 

  58. M. Saini, Biosynthesized zinc oxide nanoparticles using seed and bark extract of Azadirachta indica for antibacterial, photocatalytic and supercapacitor applications. Mater. Sci. Eng., B 282, 115789 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. N. Kumaraguru, and N. Samiveerappa, Bharathidasan University for supporting biological and electrochemical studies.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JM: Data collection, Data curation, Investigations, writing-original draft, Formal analysis, GP: investigations, writing-draft, Formal analysis, DA: investigations, Formal analysis S: supervision, validation, visualization, conceptualization, ASk: supervision, conceptualization, validation, visualization. The authors have fully read and approved the final version of the manuscript.

Corresponding author

Correspondence to K. Santhakumar.

Ethics declarations

Competing interests

The authors declared that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, J., Pavithra, G., Anusha, D. et al. The green approach of ZnO NPs and its Antioxidant, hemolytic, and photocatalytic activity and functionalized r-GO-ZnO for energy storage application. J Mater Sci: Mater Electron 34, 1131 (2023). https://doi.org/10.1007/s10854-023-10373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10373-2

Navigation