Skip to main content
Log in

Properties of ITO thin films rapid thermally annealed in different exposures of nitrogen gas

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indium tin oxide (ITO) thin films were rapid thermal annealed (RTA) for 5 min at a temperature of 550 °C in different exposures of nitrogen gas. Effects of these exposures on the structural, morphological, electrical, and optical properties of these films were investigated using X-ray diffraction, atomic force microscopy and field emission-scanning electron microscopy, four-point probe and hall effect measurements, and ultraviolet–visible-near-infrared (UV–VIS–NIR) spectrophotometer, respectively. The un-exposed RTA ITO films maintained (400) plane preferential orientation similar to the un-annealed sample. However, this plane preferential orientation was reduced relative to (222) plane for exposed RTA sample. The grains and surface roughness parameters were reduced for exposed and enhanced for un-exposed RTA samples as compared to the un-annealed sample. Relatively higher electrical conductivity, average solar transmittance, and bandgap values were observed for ITO films annealed while exposed to nitrogen gas. The exposed RTA ITO films showed sheet resistance of 7.91 Ω sq−1, average solar transmittance of 83%, and bandgap of 3.93 eV. Findings from this study suggest that RTA exposure have the potential to control ITO thin films properties, hence, extending its potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Majula, N.R. Mlyuka, M.E. Samiji, R.S. Bryce, D.Y. Kim, S.H. Kim, H.J. Lee, H.J. Choi, J. Korean Phys. Soc. (2015). https://doi.org/10.3938/jkps.67.1078

    Article  Google Scholar 

  2. Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, J. Photonics Energy. (2016). https://doi.org/10.1117/1.jpe.6.022001

    Article  Google Scholar 

  3. H.K. Thabet, A.F. Al-Hossainy, M. Imran, Opt. Mater. (Amst). (2020). https://doi.org/10.1016/j.optmat.2020.109915

    Article  Google Scholar 

  4. A.A.I. Abd-Elmageed, S.M. Ibrahim, A. Bourezgui, A.F. Al-Hossainy, New J. Chem. (2020). https://doi.org/10.1039/d0nj01719a

    Article  Google Scholar 

  5. A.A.I. Abd-Elmageed, A.F. Al-Hossainy, E.M. Fawzy, N. Almutlaq, M.R. Eid, A. Bourezgui, S.M.S. Abdel-Hamid, N.B. Elsharkawy, M. Zwawi, M.H. Abdel-Aziz, M. Bassyouni, A.B. Slimane, M.S. Zoromba, Opt. Mater. (Amst). (2020). https://doi.org/10.1016/j.optmat.2019.109593

    Article  Google Scholar 

  6. A.F. Al-Hossainy, M.S. Zoromba, M.H. Abdel-Aziz, M. Bassyouni, A. Attar, M. Zwawi, A.A.I. Abd-Elmageed, H.A. Maddah, A. Ben-Slimane, Phys. B Condens. Matter. (2019). https://doi.org/10.1016/j.physb.2019.04.030

    Article  Google Scholar 

  7. C. Guillén, J. Herrero, Vacuum (2006). https://doi.org/10.1016/j.vacuum.2005.10.006

    Article  Google Scholar 

  8. M.K. Chong, K. Pita, S.T.H. Silalahi, Mater. Chem. Phys. (2009). https://doi.org/10.1016/j.matchemphys.2008.11.039

    Article  Google Scholar 

  9. S. Song, T. Yang, J. Liu, Y. Xin, Y. Li, S. Han, Appl. Surf. Sci. (2011). https://doi.org/10.1016/j.apsusc.2011.03.009

    Article  Google Scholar 

  10. J. Li, Z. Jiang, P. Lin, X. Chen, L. Zhong, L. Zhang, X. Wang, Mod. Phys. Lett. B. (2019). https://doi.org/10.1142/S0217984919501781

    Article  Google Scholar 

  11. C. Guillén, J. Herrero, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2715539

    Article  Google Scholar 

  12. T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, T. Mise, Sol. Energy. (2004). https://doi.org/10.1016/j.solener.2004.08.010

    Article  Google Scholar 

  13. P.K. Sarswat, M. Snure, M.L. Free, A. Tiwari, Thin Solid Films (2012). https://doi.org/10.1016/j.tsf.2011.07.052

    Article  Google Scholar 

  14. D. Nečas, P. Klapetek, Cent. Eur. J. Phys. (2012). https://doi.org/10.2478/s11534-011-0096-2

    Article  Google Scholar 

  15. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. (2007). https://doi.org/10.1063/1.2432410

    Article  Google Scholar 

  16. C. Calí, M. Mosca, G. Targia, Opt. Commun. (2001). https://doi.org/10.1016/S0030-4018(01)01123-3

    Article  Google Scholar 

  17. M. Thirumoorthi, J.T.J. Prakash, J. Asian Ceram. Soc. (2016). https://doi.org/10.1016/j.jascer.2016.01.001

    Article  Google Scholar 

  18. B. Parida, Y. Gil, H. Kim, J. Nanosci. Nanotechnol. (2019). https://doi.org/10.1166/jnn.2019.16242

    Article  Google Scholar 

  19. M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belenli, M. Oz, J. Mater. Sci. Mater. Electron. (2013). https://doi.org/10.1007/s10854-012-0768-8

    Article  Google Scholar 

  20. J.N. Fru, N. Nombona, M. Diale, Phys. B Condens. Matter. (2020). https://doi.org/10.1016/j.physb.2019.411884

    Article  Google Scholar 

  21. G.K. Williamson, W.H. Hall, Acta Metall. (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  22. H.B. Sawa, M.E. Samiji, N.R. Mlyuka, Tanzania J. Sci. (2018). https://doi.org/10.4314/tjs.v44i4

    Article  Google Scholar 

  23. A.F. Al-Hossainy, M.R. Eid, M.S. Zoromba, Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2019.04.065

    Article  Google Scholar 

  24. H. Zhao, J. Xie, A. Mao, A. Wang, Y. Chen, T. Liang, D. Ma, Materials (Basel). (2018). https://doi.org/10.3390/ma11091634

    Article  Google Scholar 

  25. Y. Hu, X. Diao, C. Wang, W. Hao, T. Wang, Vacuum (2004). https://doi.org/10.1016/j.vacuum.2004.01.081

    Article  Google Scholar 

  26. A.S.A.C. Diniz, C.J. Kiely, I. Elfalla, R.D. Pilkington, A.E. Hill, Renew. Energy. (1994). https://doi.org/10.1016/0960-1481(94)90373-5

    Article  Google Scholar 

  27. A.S.A.C. Diniz, Renew. Energy. (2011). https://doi.org/10.1016/j.renene.2010.09.005

    Article  Google Scholar 

  28. O. Boussoum, M.S. Belkaid, C. Renard, G. Halais, F. Farhati, J. Nano-Electron. Phys. 11, 02010 (2019)

    CAS  Google Scholar 

  29. P. Eaton, Atomic Force Microscopy (Oxford University Press, New York, 2010)

    Google Scholar 

  30. O. Malik, F.J. De La Hidalga-Wade, J. Mater. Res. (2015). https://doi.org/10.1557/jmr.2015.159

    Article  Google Scholar 

  31. M. Ramzan, E. Ahmed, N.A. Niaz, A.M. Rana, A.S. Bhatti, N.R. Khalid, M.Y. Nadeem, Superlatt. Microstruct. (2015). https://doi.org/10.1016/j.spmi.2015.02.030

    Article  Google Scholar 

  32. A.F. Al-hossainy, M. Sh, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.03.118

    Article  Google Scholar 

  33. S.K. Park, J.I. Han, W.K. Kim, M.G. Kwak, Thin Solid Films (2001). https://doi.org/10.1016/S0040-6090(01)01489-4

    Article  Google Scholar 

  34. 34U.S. Department of Energy (DOE)/NREL/ALLIANCE, (1999). https://rredc.nrel.gov/solar/spectra/am1.5/ (accessed March 17, 2020).

  35. E. Burstein, Phys. Rev. (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  Google Scholar 

  36. A. Walsh, J.L.F. Da-Silva, S.H. Wei, Phys. Rev. B Condens. Matter Mater. Phys. (2008). https://doi.org/10.1103/PhysRevB.78.075211

    Article  Google Scholar 

  37. A.F. Al-Hossainy, M.S. Zoromba, O.A. El-Gammal, F.I. El-Dossoki, Struct. Chem. (2019). https://doi.org/10.1007/s11224-019-1289-3

    Article  Google Scholar 

  38. A.F. Al-Hossainy, M. Bassyouni, M.S. Zoromba, J. Inorg. Organomet. Polym. Mater. (2018). https://doi.org/10.1007/s10904-018-0945-1

    Article  Google Scholar 

  39. P. Prepelita, I. Stavarache, D. Craciun, F. Garoi, C. Negrila, B.G. Sbarcea, V. Craciun, Beilstein J. Nanotechnol. (2019). https://doi.org/10.3762/bjnano.10.149

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Mkwawa University College of Education (a constituent college of the University of Dar es Salaam); International Science Program (ISP) and University of Pretoria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Ollotu.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ollotu, E.R., Nyarige, J.S., Mlyuka, N.R. et al. Properties of ITO thin films rapid thermally annealed in different exposures of nitrogen gas. J Mater Sci: Mater Electron 31, 16406–16413 (2020). https://doi.org/10.1007/s10854-020-04192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04192-y

Navigation