Skip to main content
Log in

Electrical characterisation of Ag/poly(3-hexylthiophene)/silicon nanowires Schottky diode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrical properties of Ag/Poly(3-hexylthiophene)/Silicon nanowires heterostructure (Ag/P3HT/SiNWs) were investigated. Silicon nanowires (SiNWs) were obtained by metal-assisted chemical etching method in one-step process. P3HT polymer was deposited on SiNWs surfaces by electroless deposition method for different immersion durations (dim). The morphology of SiNWs before and after deposition of P3HT polymer has been examined by scanning electron microscope (SEM). The formation of nanowires as well as the presence of P3HT on their surfaces can be seen in SEM images. Current–voltage (I–V) measurements were carried out on Ag/P3HT/SiNWs by varying dim from 30 to 210 min. The electrical measurements on the different junctions at room temperature showed a rectifying effect. For 30 min, the ideality factor of the Schottky diode was reduced from 4 to 1,4. By using the Cheung method, the diode parameters of the different structures are determined and discussed. The different hetrostructures have been annealed at 100 °C, 200 and 300 °C. The characteristic parameters were calculated as a function of annealing temperature. The optimum temperature for these heterostructures characteristics is 100 °C. The interface states, the trapping levels and the thermal activation of the free carriers are the main factors involved in the conduction phenomenon through Ag/P3HT/SiNWs heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ö Vural, Y. Şafak, Ş Altındal, A. Türüt, Curr. Appl. Phys. 10, 761 (2010)

    Google Scholar 

  2. P.W. Loscutoff, S.F. Bent, Annu. Rev. Phys. Chem. 57, 467 (2006)

    CAS  Google Scholar 

  3. H. Yan, E. Shunsuke, H. Yusuke, O. Hidenori, Chem. Lett. 36(8), 986 (2007)

    CAS  Google Scholar 

  4. M. Rahmani, S. Amdouni, M.-A. Zaïbi, A. Meftah, Silicon (2020). https://doi.org/10.1007/s12633-020-00416-2

    Article  Google Scholar 

  5. Y. Qu, H. Zhou, X. Duan, Nanoscale 3, 4060 (2011)

    CAS  Google Scholar 

  6. S.-M. Koo, M.D. Edelstein, Q. Li, C.A. Richterand, E.M. Vogel, Nanotechnology 16, 1482 (2005)

    CAS  Google Scholar 

  7. L.W. Lim, F. Aziz, F.F. Muhammad, A. Supangat, K. Sulaiman, Synth. Met. 221, 169 (2016)

    CAS  Google Scholar 

  8. H. Sirringhaus, R.H. Kawase, T. Friend, M. Shimoda, W. Inbasekaran, E.P. Wu, Woo, Science 290, 2123 (2000)

    CAS  Google Scholar 

  9. L. Li, A. Ishi, Q. Liu, Y. Itai, R. Fujihara, Y. Ohno, A.-P. Ao, IEEE J. Electron. Dev. Soc. 2(6), 168 (2014)

    CAS  Google Scholar 

  10. M. Ran-Ju, J. Myeong-Il, S.V. Jagdeesh Chandra, S. Kyu-Hwan, J. Moongyu, H. Hyo-Bong, C. Sung-Yong, C. Chel-Jong, J. Electrochem. Soc. 156, 621 (2009)

    Google Scholar 

  11. V. Singh, A.K. Thakur, S.S. Pandey, W. Takashima, K. Kaneto, Org. Electron. 9, 790 (2008)

    CAS  Google Scholar 

  12. D. Shao, M. Yu, H. Sun, G. Xin, J. Lian, S. Sawyer, Appl. Mater. Interfaces 6, 14690 (2014)

    CAS  Google Scholar 

  13. Y. Onganer, M. Saglam, A. Tϋrϋt, H. Efeoglu, S. Tuzemen, Solid-Stare Elecron. 39, 677 (1996)

    CAS  Google Scholar 

  14. C. Shalu, N. Yadav, K. Bhargava, M.P. Joshi, V. Singh, Semicond. Sci. Technol. 33, 095021 (2018)

    Google Scholar 

  15. N. Oyama, S. Kaneko, K. Momiyama, K. Kanomata, F. Hirose, Microelectron. Eng. 104, 130 (2013)

    CAS  Google Scholar 

  16. Y. Huang, E.J. Kramer, A.J. Heeger, G.C. Bazan, Chem. Rev. 114, 7006 (2014)

    CAS  Google Scholar 

  17. M. Rahmani, L. Jerbi, A. Meftah, J. Lumin. 217, 116805 (2020)

    CAS  Google Scholar 

  18. G. Goncher, L. Noice, R. Solanki, J. Exp. Nanosci. 3(1), 77 (2008)

    CAS  Google Scholar 

  19. S. Ben Dkhil, R. Ebdelli, W. Dachraoui, H. Faltakh, R. Bourguiga, J. Davenas, Synth. Met. 192, 74 (2014)

    CAS  Google Scholar 

  20. J. Davenas, E. Beyou, D. Cornu, S. Vignoli, . Energy Procedia 31, 136 (2012)

    CAS  Google Scholar 

  21. Y.-M. Chin, Y.-J. Lin, Mater. Chem. Phys. 145, 232 (2014)

    CAS  Google Scholar 

  22. V. Skrypnychuk, N. Boulanger, V. Yu, M. Hilke, M.F. Toney, D.R. Barbero, J. Mater. Chem. C 4, 4143 (2016)

    CAS  Google Scholar 

  23. T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Fujii, T. Namazu, N.-T. Nguyen, D.V. Dao, Mater. Lett. 177, 80 (2016)

    CAS  Google Scholar 

  24. V.R. Reddy, A. Umapathi, L.D. Rao, Curr. Appl. Phys. 13, 1604 (2013)

    Google Scholar 

  25. M. Soylu, B. Abay, Y. Onganer, J. Phys. Chem. Solids 71, 1398 (2010)

    CAS  Google Scholar 

  26. S. Amdouni, Y. Coffinier, S. Szunerits, M.A. Zaïbi, M. Oueslati, R. Boukherroub, Semicond. Sci. Technol. 31, 014011 (2016)

    Google Scholar 

  27. A. Kırsoy, M. Ahmetoglu, A. Asimov, B. Kucur, Acta Physica Polonica A 128, 170 (2015)

    Google Scholar 

  28. S. Ashok, J.M. Borrego, R.J. Gutmann, Solid State Electron. 22, 621 (1979)

    CAS  Google Scholar 

  29. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 84 (1986)

    Google Scholar 

  30. A. Srivastava, P. Chakrabarti, Synth. Met. 207, 96 (2015)

    CAS  Google Scholar 

  31. A.F. Özdemir, S.G. Aydina, D.A. Aldemir, S.S. Gürsoy, Synth. Met. 161, 692 (2011)

    Google Scholar 

  32. M. Rahmani, A. Moadhen, M.-A. Zaïbi, A. Lusson, H. Elhouichet, M. Oueslati, J. Alloys Compd. 485, 422 (2009)

    CAS  Google Scholar 

  33. S. Vaziri, M. Belete, E. Dentoni Litta, A.D. Smith, G. Lupina, M.C. Lemme, M. Östling, Nanoscale 7, 13096 (2015)

    CAS  Google Scholar 

  34. L.W. Lim, F. Aziz, F.F. Muhammad, A. Supangat, K. Sulaiman, Synth. Met. 221, 196 (2016)

    Google Scholar 

  35. K. Rasool, M.A. Rafiq, Z.A.K. Durrani, Microelectron. Eng. 1191, 141 (2014)

    Google Scholar 

  36. C. Tozlu, A. Mutlu, Synth. Met 211, 99 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Sonia Amdouni and Pr. Rabeh Boukharroub (Univ. Valenciennes, Lille – France) for their help to perform SEM images. The authors acknowledge also Dr. Hosni Ajlani for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rahmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, M., Meftah, A. Electrical characterisation of Ag/poly(3-hexylthiophene)/silicon nanowires Schottky diode. J Mater Sci: Mater Electron 31, 16352–16359 (2020). https://doi.org/10.1007/s10854-020-04185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04185-x

Navigation