Skip to main content

Advertisement

Log in

Hydrothermal synthesis of layered CoS@WS2 nanocomposite as a potential electrode for high-performance supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low cost and efficient one-step facile hydrothermal synthesis was used to synthesis CoS@WS2 composite on the surface of nickel foam and evaluated as an electrode material for high-performance supercapacitors. Electrochemical impedance spectroscopy, galvanostatic charge–discharge tests, and cyclic voltammetry were used to evaluate the electrochemical characteristics of the CoS@WS2 electrode. A high-specific capacitance of 2442.32 F g−1 at a current density of 4.28 A g−1 was noted for CoS@WS2. The fabricated CoS@WS2 electrode material displayed acceptable rate capability (97.1% capacitance retention at a current density of 4.28 A g−1) and good cycling stability over 3000 charge–discharge cycles. The advanced electrochemical characteristics of CoS@WS2 were contributed to the synergistic effect and high surface area. The greater electrochemical performance of nanoparticles-like CoS@WS2 composite attracts their capacity to meet the requirements of applied electrochemical energy-loading applications. Over all, these results demonstrate that the synthesis of layered CoS@WS2 could be a promising for applied electrochemical energy-loading applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Demirbaş, Energy conservation and storage systems. Energy Explor. Exploit. 20, 391–399 (2002)

    Google Scholar 

  2. M. Nosonovsky, B. Bhushan, Green Tribology: Biomimetics, Energy Conservation and Sustainability, illustraed edn. (Springer, Berlin, 2012), p. 634

    Google Scholar 

  3. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004)

    CAS  Google Scholar 

  4. M.S. Halper, J.C. Ellenbogen, Supercapacitors: A Brief Overview (The MITRE Nano systems Group, McLean, 2006), pp. 1–41

    Google Scholar 

  5. A. d'Entremont, L. Pilon, First-principles thermal modeling of electric double layer capacitors under constant-current cycling. J. Power Sources 246, 887–898 (2014)

    CAS  Google Scholar 

  6. Q. Lu, J.G. Chen, J.Q. Xiao, Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem. Int. Ed. 52, 1882–1889 (2013)

    CAS  Google Scholar 

  7. T. Wang, H.C. Chen, F. Yu, X. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2018)

    Google Scholar 

  8. I. Kanaka Durga, S. Srinivasa Rao, J.-W. Ahn, T.-Y. Park, B. Jin-Soo, C.-I. Ho, K. Prabakar, H.-J. Kim, Dice-like nanostructure of a CuS@ PbS composite for high-performance supercapacitor electrode applications. Energies 11, 1624 (2018)

    Google Scholar 

  9. K.-J. Huang, J.-Z. Zhang, Y.-L. Jia, K. Xing, Y.-M. Liu, Acetylene black incorporated layered copper sulfide nanosheets for high-performance supercapacitor. J. Alloys Compd. 641, 119–126 (2015)

    CAS  Google Scholar 

  10. H. Peng, G. Ma, K. Sun, J. Mu, H. Wang, Z. Lei, High-performance supercapacitor based on multi-structural CuS@ polypyrrole composites prepared by in situ oxidative polymerization. J. Mater. Chem. A 2, 3303–3307 (2014)

    CAS  Google Scholar 

  11. B. Qu, Y. Chen, M. Zhang, L. Hu, D. Lei, B. Lu, Q. Li, Y. Wang, L. Chen, T. Wang, beta-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale 4, 7810–7816 (2012)

    CAS  Google Scholar 

  12. S. Peng, X. Han, L. Li, Z. Zhu, F. Cheng, M. Srinivansan, S. Adams, S. Ramakrishna, Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12, 1359–1368 (2016)

    CAS  Google Scholar 

  13. M. Minakshi, H. Visabal, R.G. David Mitchell, M. Fichtner, Bio-waste chicken eggshell to store energy. Dalton Trans. 47, 16815–17178 (2018)

    Google Scholar 

  14. M. Minakshi, S. Higley, C. Baur, R.G. David Mitchell, T. Robert Jones, M. Fichtner, Calcined chicken eggshell electrode for battery and supercapacitor applications. RSC Adv. 9, 26981–26995 (2019)

    CAS  Google Scholar 

  15. B. Shujahadeen Aziz, M.A. Brza, M.H. Hamsan, M.F.Z. Kadir, S.K. Muzakir, T. Rebar Abdulwahid, Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA:dextran:NH4I based polymer blend electrolytes. J. Mater. Res. Technol. 9, 3734–3745 (2020)

    Google Scholar 

  16. B. Shujahadeen Aziz, M.H. Hamsan, M. Ranjdar Abdullah, T. Rebar Abdulwahid, M.A. Brza, A. Shahab, M.F.Z. Kadir, Protonic EDLC cell based on chitosan (CS): methylcellulose (MC) solid polymer blend electrolytes. Ionics 26, 1829–1840 (2020)

    Google Scholar 

  17. B. Shujahadeen Aziz, M.H. Hamsan, O. Wrya Karim, Sh Ayub Marif, T. Rebar Abdulwahid, M.F.Z. Kadir, M.A. Brza, Study of impedence and solid-state double-layer capacitor behavior of proton (H+)-conducting polymer blend electrolyte-based CS:PS polymers. Ionics (2020). https://doi.org/10.1007/s11581-020-03578-6.pdf

    Article  Google Scholar 

  18. H. Wan, X. Ji, J. Jiang, J. Yu, L. Miao, L. Zhang, S. Bie, H. Chen, Y. Ruan, Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J. Power Sources 243, 396–402 (2013)

    CAS  Google Scholar 

  19. J. Yang, C. Yu, X. Fan, S. Liang, S. Li, H. Huang, Z. Ling, C. Hao, J. Qiu, Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299–1307 (2016)

    CAS  Google Scholar 

  20. W. Fu, C. Zhao, W. Han, Y. Liu, H. Zhao, Y. Ma, E. Xie, Cobalt sulfide nanosheets coated on NiCo2S4 nanotube arrays as electrode materials for high-performance supercapacitors. J. Mater. Chem. A 3, 10492–10497 (2015)

    CAS  Google Scholar 

  21. X. Li, Q. Li, Y. Wu, M. Rui, H. Zeng, Two-dimensional, porous nickel–cobalt sulfide for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 19316–19323 (2015)

    CAS  Google Scholar 

  22. Z. Jiang, W. Lu, Z. Li, K.H. Ho, X. Li, X. Jiao, D. Chen, Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors. J. Mater. Chem. A 2, 8603–8606 (2014)

    CAS  Google Scholar 

  23. S.-J. Bao, C.M. Li, C.-X. Guo, Y. Qiao, Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J. Power Sources 180, 676–681 (2008)

    CAS  Google Scholar 

  24. L. Shen, L. Yu, H.B. Wu, X.-Y. Yu, X. Zhang, X.W.D. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015)

    CAS  Google Scholar 

  25. K. Subramani, N. Sudhan, R. Divya, M. Sathish, All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv. 7, 6648–6659 (2017)

    CAS  Google Scholar 

  26. S. Ratha, C.S. Rout, Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl. Mater. Interfaces 5, 11427–11433 (2013)

    CAS  Google Scholar 

  27. N. Choudhary, C. Li, H.-S. Chung, J. Moore, J. Thomas, Y. Jung, High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers. ACS Nano 10, 10726–10735 (2016)

    CAS  Google Scholar 

  28. A. Ghorai, A. Midya, S.K. Ray, Superior charge storage performance of WS2 quantum dots in a flexible solid state supercapacitor. New J. Chem. 42, 3609–3613 (2018)

    CAS  Google Scholar 

  29. X. Wang, S.X. Zhao, L. Dong, Q.L. Lu, J. Zhu, C.W. Nan, One-step synthesis of surface-enriched nickel cobalt sulfide nanoparticles on graphene for high-performance supercapacitors. Energy Storage Mater. 6, 180–187 (2017)

    Google Scholar 

  30. P. Zhang, B.Y. Guan, L. Yu, X.W.D. Lou, Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew. Chem. Int. Ed. 56, 7141–7145 (2017)

    CAS  Google Scholar 

  31. N. Hu, W.H. Gong, L. Huang, P.K. Shen, Ultrahigh energy density asymmetric electrochemical capacitor based on flower-like ZnO/Co3O4 nanobundle arrays and stereotaxically constricted graphene. J. Mater. Chem. A 7, 1273–1280 (2019)

    CAS  Google Scholar 

  32. J. Wang, Lu Jiang Chang, J.H. Wang, One-step and low-temperature synthesis of CoMoO4 nanowire arrays on Ni foam for asymmetric supercapacitors. Ionics 24, 3967–3973 (2018)

    CAS  Google Scholar 

  33. Z. Liang, H. Xia, H. Lia, L. Zhang, J. Zhou, H. Li, W. Xie, Enhanced capacitance characteristics of microporous carbon spheres through surface modification by oxygen-containing groups. Results Phys. 15, 102586.1–102586.8 (2019)

    Google Scholar 

  34. C.K. Ranaweera, Z. Wang, E. Alqurashi, P.K. Kahol, P.R. Dvornic, B.K. Gupta, K. Ramasamy, A.D. Mohite, G. Gupta, R.K. Gupta, Highly stable hollow bifunctional cobalt sulfides for flexible supercapacitors and hydrogen evolution. J. Mater. Chem. A. 4, 9014–9018 (2016)

    CAS  Google Scholar 

  35. C. Nagaraju, C.V.V.M. Gopi, J.W. Ahn, H.J. Kim, Hydrothermal synthesis of MoS2 and WS2 nanoparticles for high-performance supercapacitor applications. New J. Chem. 42, 12357–12360 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. N. V. Krishna or Hee-Je Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, T.N.V., Himasree, P., Raghavendra, K.V.G. et al. Hydrothermal synthesis of layered CoS@WS2 nanocomposite as a potential electrode for high-performance supercapacitor applications. J Mater Sci: Mater Electron 31, 16290–16298 (2020). https://doi.org/10.1007/s10854-020-04177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04177-x

Navigation