Skip to main content
Log in

Structure and electrical properties in Sb-doped Ba0.93Ca0.07Ti0.92Sn0.08O3 ceramics near the phase coexistence point

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Sb-doped Ba0.93Ca0.07Ti0.92Sn0.08O3 ceramics were successfully prepared by conventional solid-phase sintering reaction process and their phase structure, microstructure, and electrical properties were investigated systematically. The enhanced piezoelectric and dielectric properties (d33 = 520 pC/N, kp = 0.475, Qm = 149.3, εr = 6113 and tanδ = 1.73%) were obtained due to the co-existence of rhombohedral, orthorhombic and tetragonal phases near the room temperature. Meanwhile, the optimal ferroelectric properties (Pr = 8.17 μC/cm2, Ec = 1.56 kV/cm) were also gained at x = 0.15 mol%. The temperature dependence of dielectric constant reveals relaxation behavior at various frequencies, and relevant diffuse phase transition has been carefully studied. The large d33, εr, low tanδ and the relaxation behavior in (1−x)Ba0.93Ca0.07Ti0.92Sn0.08O3xSb2O3 (x = 0.15 mol%) ceramic make it as a potential candidate for high power piezoelectric applications and ceramic capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Zhang et al., Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—a review. Prog. Mater. Sci. 68, 1–66 (2015)

    CAS  Google Scholar 

  2. J.G. Hao et al., Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R 135, 1–57 (2019)

    Google Scholar 

  3. S.J. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J. Appl. Phys. 111(3), 031301 (2012)

    Google Scholar 

  4. F. Zeng et al., Relaxor phenomenon of (1 − x)(Ba0.85Ca0.15)(Zr0.09Ti0.91)O3–xTa + 0.6 wt% Li2CO3 ceramics with high piezoelectric constant and Curie temperature. Ceram. Int. 44(9), 10677–10684 (2018)

    CAS  Google Scholar 

  5. M. Kroutvar et al., Optically programmable electron spin memory using semiconductor quantum dots. Nature 432(7013), 81–84 (2004)

    CAS  Google Scholar 

  6. W.F. Liu, X.B. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)

    Google Scholar 

  7. L.-F. Zhu et al., Enhanced piezoelectric properties of (Ba1 – xCax)(Ti0.92Sn0.08)O3 lead-free ceramics. J. Am. Ceram. Soc. 96(1), 241–245 (2013)

    CAS  Google Scholar 

  8. Y. Yang et al., Phase coexistence and large piezoelectricity in BaTiO3–CaSnO3 lead-free ceramics. J. Am. Ceram. Soc. 101(6), 2594–2605 (2018)

    CAS  Google Scholar 

  9. L. Zhao et al., Phase structure and property evaluation of (Ba, Ca)(Ti, Sn)O3 sintered with Li2CO3 addition at low temperature. J. Am. Ceram. Soc. 97(7), 2164–2169 (2014)

    CAS  Google Scholar 

  10. G.-Z. Zang et al., Perovskite (Na0.5K0.5)1 − x(LiSb)xNb1 − xO3 lead-free piezoceramics. Appl. Phys. Lett. 88(21), 212908 (2006)

    Google Scholar 

  11. N. Klein et al., A study of the phase diagram of (K, Na, Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy. J. Appl. Phys. 102(1), 014112 (2007)

    Google Scholar 

  12. X. Pang et al., Effects of Sb content on electrical properties of lead-free piezoelectric (K0.4425Na0.52Li0.0375) (Nb0.9625 − xSbxTa0.0375)O3 ceramics. Ceram. Int. 38(2), 1249–1254 (2012)

    CAS  Google Scholar 

  13. J. Ma et al., Dielectric, ferroelectric, and piezoelectric properties of Sb2O3-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 25(2), 992–996 (2013)

    Google Scholar 

  14. Y.Y. Wang et al., Phase transition and piezoelectric properties of alkali niobate ceramics through composition tuning. RSC Adv. 5(76), 61989–61997 (2015)

    CAS  Google Scholar 

  15. W. Gao, J. Lv, X. Lou, Large electric-field-induced strain and enhanced piezoelectric constant in CuO-modified BiFeO3−BaTiO3 ceramics. J. Am. Ceram. Soc. 101(8), 3383–3392 (2018)

    CAS  Google Scholar 

  16. K. Tong et al., Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3−BaTiO3 ceramics. J. Eur. Ceram. Soc. 38(4), 1356–1366 (2018)

    CAS  Google Scholar 

  17. L. Zhao et al., High piezoelectricity in CuO-modified Ba(Ti0.90Sn0.10)O3 lead-free ceramics with modulated phase structure. J. Eur. Ceram. Soc. 37(4), 1411–1419 (2017)

    CAS  Google Scholar 

  18. C. Zhao et al., Improved temperature stability and high piezoelectricity in lead-free barium titanate-based ceramics. J. Eur. Ceram. Soc. 38(16), 5411–5419 (2018)

    CAS  Google Scholar 

  19. N. Baskaran et al., Phase transformation studies of ceramic BaTiO3 using thermo-Raman and dielectric constant measurements. J. Appl. Phys. 91(12), 10038 (2002)

    CAS  Google Scholar 

  20. A. Jalalian, A.M. Grishin, Biocompatible ferroelectric (Na, K)NbO3 nanofibers. Appl. Phys. Lett. 100(1), 012904 (2012)

    Google Scholar 

  21. R. Hayati et al., Effects of Bi2O3 additive on sintering process and dielectric, ferroelectric, and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. J. Eur. Ceram. Soc. 36(14), 3391–3400 (2016)

    CAS  Google Scholar 

  22. Y. Yang et al., Coexistence of three ferroelectric phases and enhanced piezoelectric properties in BaTiO3–CaHfO3 lead-free ceramics. J. Eur. Ceram. Soc. 38(2), 557–566 (2018)

    CAS  Google Scholar 

  23. J. Pokorný et al., Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 109(11), 114110 (2011)

    Google Scholar 

  24. R. Jing et al., Comparative study on structure, dielectric, and piezoelectric properties of (Na0.47Bi0.47Ba0.06)0.95A0.05TiO3 (A = Ca2+/Sr2+) ceramics: effect of radii of A-site cations. J. Eur. Ceram. Soc. 38(9), 3111–3117 (2018)

    CAS  Google Scholar 

  25. T. Wang et al., Microstructure and electrical properties of (1 − x)[0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3]–xBiCoO3 lead-free ceramics. Mater. Chem. Phys. 186, 407–414 (2017)

    CAS  Google Scholar 

  26. L. Zhao et al., Effect of Li2O addition on sintering and piezoelectric properties of (Ba, Ca) (Ti, Sn)O3 lead-free piezoceramics. J. Eur. Ceram. Soc. 35(2), 533–540 (2015)

    CAS  Google Scholar 

  27. N. Ma, B.-P. Zhang, W.-G. Yang, Low-temperature sintering of Li2O-doped BaTiO3 lead-free piezoelectric ceramics. J. Electroceram. 28(4), 275–280 (2012)

    CAS  Google Scholar 

  28. L. Zhao et al., Piezoelectric and ferroelectric properties of (Ba, Ca) (Ti, Sn)O3 lead-free ceramics sintered with Li2O additives: analysis of point defects and phase structures. Ceram. Int. 42(1), 1086–1093 (2016)

    CAS  Google Scholar 

  29. Q. Zhang et al., Enhanced piezoelectric response of (Ba, Ca) (Ti, Zr)O3 ceramics by super large grain size and construction of phase boundary. J. Alloy Compd. 794, 542–552 (2019)

    CAS  Google Scholar 

  30. N. Lei et al., Effect of lattice occupation behavior of Li+ cations on microstructure and electrical properties of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 109(5), 054102 (2011)

    Google Scholar 

  31. J. Du et al., Sintering and electrical properties of La-modified (Na0.52K0.45Li0.03)1 − 3xLax(Nb0.88Sb0.09Ta0.03)O3 lead-free ceramics. Ceram. Int. 40(3), 4319–4322 (2014)

    CAS  Google Scholar 

  32. J. Xing et al., Properties and structures of nonstoichiometric (K, Na)NbO3-based lead-free ceramics. J. Am. Ceram. Soc. 101(4), 1632–1645 (2018)

    CAS  Google Scholar 

  33. Z. Cen et al., Improving piezoelectric properties and temperature stability for KNN-based ceramics sintered in a reducing atmosphere. J. Am. Ceram. Soc. 101(9), 4108–4117 (2018)

    CAS  Google Scholar 

  34. F. Du et al., Synthesis, characterization, and dielectric properties of Ba(Ti1 – xSnx)O3 nanopowders and ceramics. Mater. Res. Bull. 44(9), 1930–1934 (2009)

    CAS  Google Scholar 

  35. B.D. Begg, E.R. Vance, J. Nowotny, Effect of particle size on the room-temperature crystal structure of barium titanate. J. Am. Ceram. Soc. 77(12), 6 (1994)

    Google Scholar 

  36. M.H. Frey, D.A. Payne, Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54(5), 3158–3168 (1996)

    CAS  Google Scholar 

  37. M. Kuwabara, H. Matsuda, Shift of the Curie point of barium titanate ceramics with sintering temperature. J. Am. Ceram. Soc. 80, 7 (1997)

    Google Scholar 

  38. M.-J. Pan, C.A. Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 26(3), 44–50 (2010)

    CAS  Google Scholar 

  39. Z.G. Ye, Relaxor ferroelectric complex perovskites: structure, properties and phase transitions. Key Eng. Mater. 155–156, 81–122 (1998)

    Google Scholar 

  40. P.-F. Zhou et al., High piezoelectricity due to multiphase coexistence in low-temperature sintered (Ba, Ca)(Ti, Sn)O3-CuOx ceramics. Appl. Phys. Lett. 103(17), 172904 (2013)

    Google Scholar 

Download references

Acknowledgements

The work was supported by High-Level Innovative Talents Plan of Guizhou Province No.(2015)4009 and Specialized Funds from Industry and Information Technology Department of Guizhou Province No. 2016056. And the authors also acknowledged the support of the National Natural Science Foundation of China under Project No. 51602066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qibin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Zeng, F., Wang, Y. et al. Structure and electrical properties in Sb-doped Ba0.93Ca0.07Ti0.92Sn0.08O3 ceramics near the phase coexistence point. J Mater Sci: Mater Electron 31, 16235–16246 (2020). https://doi.org/10.1007/s10854-020-04166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04166-0

Navigation