Skip to main content
Log in

Effects of CaHfO3 on the electrical properties of Bi0.49Na0.49Ca0.02TiO3 ferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x) (Bi0.49Na0.49Ca0.02TiO3)-xCaHfO3 (BCNTH-x, x = 0.01, 0.02, 0.03, 0.035, 0.04) systems were prepared by solid-state reaction method. Their microstructures, dielectric/piezoelectric/ferroelectric properties and impedance spectroscopy were investigated. All compositions demonstrated a single orthorhombic structure with Pbnm space group. Temperature-dependent permittivity curves displayed one anomaly, which shifts to low temperature from 278 to 208 °C with increased CaHfO3 content, because of the replacement of Hf4+ for Ti4+ at the B-site that reduced B-site cation ordering. Analysis of dielectric and ferroelectric properties indicated that a crossover from typical ferroelectrics to relaxor ferroelectrics occurred in BCNTH-0.03 and BCNTH-0.035 ceramics. The largest electrostrictive strain of 0.22% and the lowest coercive field of 37.7 kV/cm were achieved in BCNTH-0.035 and BCNTH-0.03 ceramics under 100 kV/cm, respectively. Ferroelectric domain and domain wall were fitted by impedance complexes, and the corresponding activation energy was 0.46 and 1.18 eV, which may be correlated to the combination of motion of the first ionization of oxygen vacancies and doubly ionized oxygen vacancies, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S.W. Liu, S. Biring, S. Sen, Improvement of energy storage properties with the reduction of depolarization temperature in lead-free (1–x)Na0.5Bi0.5TiO3-xAgTaO3ceramics. Appl. Phys. Lett. 125, 054101 (2019)

    Google Scholar 

  2. F. Chen, R. Schafranek, A. Wachau, S. Zhukov, J. Glaum, T. Granzow, H. von Seggem, A. Klein, Barrier heights, polarization switching, and electrical fatigue in Pb(Zr, Ti)O3 ceramics with different electrodes. J. Appl. Phys. 108, 104106 (2010)

    Google Scholar 

  3. X.H. Dai, A. DiGiovanni, D. Viehland, D. Viehland, Dielectric properties of tetragonal lanthanum modified lead zirconate titanate ceramics. J. Appl. Phys. 74, 3399–3405 (1993)

    CAS  Google Scholar 

  4. Z.H. Ning, Y. Jiang, J. Jian, J. Guo, J.R. Cheng, H.W. Cheng, J.G. Chen, Achieving both large piezoelectric constant and high Curie temperature in BiFeO3-PbTiO3-BaTiO3 solid solution. J. Alloys Compd. 6, 2338–2344 (2020)

    Google Scholar 

  5. B.J. Teng, J.T. Zeng, J.R. Cheng, L.Y. Zheng, G.R. Li, Effect of SnO2 doping on electric field-induced antiferroelectric-to-ferroelectric phase transition of Pb(Yb1/2Nb1/2)0.98Sn0.02O3 ceramics. J. Alloys Compd. 821, 153468 (2020)

    CAS  Google Scholar 

  6. L. Fulanović, A. Bradeško, N. Novak, B. Malič, V. Bobnar, Relation between dielectric permittivity and electrocaloric effect under high electric fields in the Pb(Mg1/3Nb2/3)O3-based ceramics. J. Appl. Phys. 127, 184102 (2020)

    Google Scholar 

  7. A. Maqbool, J.U.R. Rahman, A. Hussain, J.K. Park, T.G. Park, J.S. Song, M.H. Kim, Structure and temperature dependent electrical properties of lead-free Bi05Na05TiO3-SrZrO3 ceramics. IOP Conf. Ser. 60, 012047 (2014)

    Google Scholar 

  8. D.S. Yin, Z.H. Zhao, Y.J. Dai, Z. Zhao, X.W. Zhang, S.H. Wang, Electrical properties and relaxor phase evolution of Li-modified BNT-BKT-BT lead-free ceramics. J. Am. Ceram. Soc. 99, 2354–2360 (2016)

    CAS  Google Scholar 

  9. S. Sasikumar, R. Saravanan, S. Saravanakumar, K. Aravinth, Charge correlation of ferroelectric and piezoelectric properties of (1–x)(Na0.5Bi0.5)TiO3-xBaTiO3 lead-free ceramic solid solution. J. Mater. Sci. Mater. Electron. 28, 9950–9963 (2017)

    CAS  Google Scholar 

  10. Y.Y. Zhao, J.W. Xu, L. Yang, C.R. Zhou, X.P. Lu, C.L. Yuan, Q.N. Li, G.H. Chen, H. Wang, High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al05Nb05)4+ complexion. J. Alloys Compd. 666, 209–216 (2016)

    CAS  Google Scholar 

  11. H.B. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, A lead free relaxation and high energy storage efficiency ceramics for energy storage applications. J. Alloys Compd. 710, 436–445 (2017)

    CAS  Google Scholar 

  12. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Not Roles of lattice distortion in (1–x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics. Appl. Phys. Lett. 96, 202901 (2010)

    Google Scholar 

  13. L.H. Luo, B.Y. Wang, X.J. Jiang, W.P. Li, Energy storage properties of (1–x)(Bi0.5Na0.5)TiO3-xKNbO3 lead-free ceramics. J. Mater. Sci. 49, 1659–1665 (2013)

    Google Scholar 

  14. Y. Yuan, C.J. Zhao, X.H. Zhou, B. Tang, S.R. Zhang, High-temperature stable dielectrics in Mn-modified (1–x)Bi0.5Na0.5TiO3-xCaTiO3 ceramics. J. Electroceram. 25, 212–217 (2010)

    CAS  Google Scholar 

  15. R. Ranjan, R. Garg, V. Kothai, A. Agrawal, A. Senyshyn, H. Boysen, Phases in the (1–x)Na0.5Bi0.5TiO3-xCaTiO3 system. J. Phys. Condens. Matter. 22, 075901 (2010)

    Google Scholar 

  16. Y. Yuan, E.Z. Li, B. Li, B. Tang, X.H. Zhou, Effects of Ca and Mn additions on the microstructure and dielectric properties of (Bi0.5Na0.5)TiO3 ceramics. J. Electron. Mater. 40, 2234–2239 (2011)

    CAS  Google Scholar 

  17. Y. Yang, Y.B. Zhou, J. Ren, Q.J. Zheng, K.H. Lam, D. Lin, Coexistence of three ferroelectric phases and enhanced piezoelectric properties in BaTiO3-CaHfO3 lead-free ceramics. J. Eur. Ceram. Soc. 38, 557–566 (2017)

    Google Scholar 

  18. L.S. Gao, H.Z. Guo, S.J. Zhang, C.A. Randall, A perovskite lead-free antiferroelectric xCaHfO3-(1–x)NaNbO3 with induced double hysteresis loops at room temperature. J. Appl. Phys. 120, 204102 (2016)

    Google Scholar 

  19. C. Zhou, W.F. Liu, D.Z. Xue, X.B. Ren, H.X. Bao, J.H. Gao, L.X. Zhang, Triple-point-type morphotropic phase boundary based large piezoelectric Pb-free material Ba(Ti0.8Hf0.2)O3-(Ba0.7Ca0.3)TiO3. Appl. Phys. Lett. 100, 222910 (2012)

    Google Scholar 

  20. S.K. Rout, A. Raj, S.K. Ghosh, Compositional effect on dielectric and ferroelectric properties of lead free Zr modified BNT ceramic. Ferroelectrics 518, 66–72 (2017)

    CAS  Google Scholar 

  21. F. Li, J.W. Zhai, B. Shen, X. Liu, K. Yang, Y. Zhang, P. Li, B.H. Liu, H.R. Zeng, Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J. Appl. Phys. 121, 054103 (2017)

    Google Scholar 

  22. J. Camargo, A.P. Espinosa, L. Ramajo, M. Castro, Influence of the sintering process on ferroelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Elecron. 29, 5427–5432 (2018)

    CAS  Google Scholar 

  23. R. Sumang, T. Bongkarn, N. Kumar, M. Kamnoy, Investigation of a new lead-free (1-x-y)BNT-xBKT-yBZT piezoelectric ceramics. Ceram. Int. 43, S102–S109 (2017)

    CAS  Google Scholar 

  24. B. Parija, T. Badapanda, S.K. Rout, L.S. Cavalcantede, S. Panigrahi, E. Longo, N.C. Batista, T.P. Sinha, Morphotropic phase boundary and electrical properties of 1–x[Bi0.5Na0.5]TiO3-xBa[Zr0.25Ti0.75]O3 lead-free piezoelectric ceramics. Ceram. Int. 39, 4877–4886 (2013)

    CAS  Google Scholar 

  25. H.B. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y.L. Wang, L. Guo, W.D. Tai, H. Wei, Lead-free BaTiO3 -Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc. 37, 3303–3311 (2017)

    CAS  Google Scholar 

  26. X.L. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, Thermally stable BaTiO3-Bi(Mg2/3Nb1/3)O3 solid solution with high relative permittivity in a broad temperature usage range. J. Am. Ceram. Soc. 98, 804–810 (2015)

    CAS  Google Scholar 

  27. S.J. Pang, L. Yang, J.Y. Qin, H. Qin, H. Xie, H. Wang, C.R. Zhou, J.W. Xu, Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+ complex-ions doped BNT-BT ceramics. Appl. Phys. A. 125, 119 (2019)

    Google Scholar 

  28. G. Viola, R. Mckinnom, V. Koval, A. Adomkevicius, S. Dunn, H. Yan, Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics. J. Phys. Chem. C. 118, 8564–8570 (2014)

    CAS  Google Scholar 

  29. L.L. Li, J.G. Hao, Z.J. Xu, W. Li, R.Q. Chu, 0.46% unipolar strain in lead-free BNT-BT system modified with Al and Sb. Mater. Lett. 184, 152–156 (2016)

    CAS  Google Scholar 

  30. T.Y. Li, X.J. Lou, X.Q. Ke, S.D. Cheng, S.B. Mi, X.J. Wang, J. Shi, X. Liu, G.Z. Dong, H.Q. Fan, Y.Z. Wang, Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater. 128, 337–344 (2017)

    CAS  Google Scholar 

  31. M. Chandrasekhar, D.K. Khatua, R. Pattanayak, P. Kumar, Dielectric relaxation and conduction mechanism studies of BNT-BT-BKT ceramics. J. Phys. Chem. Solids 111, 160–166 (2017)

    CAS  Google Scholar 

  32. J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990)

    CAS  Google Scholar 

  33. Y.D. Xia, Z.G. Liu, Y. Wang, L. Shi, L. Chen, J. Yin, X.K. Meng, Conduction behavior change responsible for the resistive switching as investigated by complex impedance spectroscopy. Appl. Phys. Lett. 91, 102904 (2007)

    Google Scholar 

Download references

Acknowledgements

Financial supports of the National Natural Science Foundation of China (Grants Nos. 11464006, 61561011) and Guangxi Natural Science Foundation of China (Grant No. 2015GXNSFFA139002) are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liufang Meng or Changlai Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, Y., Meng, L. et al. Effects of CaHfO3 on the electrical properties of Bi0.49Na0.49Ca0.02TiO3 ferroelectric ceramics. J Mater Sci: Mater Electron 31, 16209–16219 (2020). https://doi.org/10.1007/s10854-020-04116-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04116-w

Navigation