Skip to main content
Log in

Investigations on Dielectric, Transport, and Ferroelectric Properties of Ca-Modified Bi0.80La0.20FeO3 Ceramic Synthesized by Solid State Reaction Route

  • Topical Collection: International Conference on Organic Electronics 2022
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ca ion-modified Bi0.80−xCaxLa0.20FeO3 (BCLFO) polycrystalline samples (with x = 0.0, 0.03, 0.06, and 0.12), synthesized by solid-state reaction, and their structural, dielectric, transport, and ferroelectric properties are explored. Rietveld analysis of XRD data revealed that Ca ions provoke structural distortions followed by a phase transition for x = 0.12. The Williamson–Hall analysis revealed that Ca doping enhances the distortion in FeO6 octahedra, resulting in increases in strain and particle size. Scanning electron microscopy demonstrates a decrease in grain size with Ca doping. Room-temperature dielectric properties are remarkably enhanced with Ca incorporation when compared with those of undoped Bi0.80La0.20FeO3 (BLFO). Furthermore, the ac conductivity of these samples has been investigated from room temperature to 500 °C and different conduction mechanisms were found in different temperature regions. Ca incorporation prevents Bi evaporation and fluctuation of Fe oxidation states, which is reflected in better ferroelectric polarization versus electric field (P–E) loops than those of BLFO ceramics. However, this behavior reverses for x = 0.12 due to a structural rhombohedral to orthorhombic phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Chen, X. Li, H. Zhou, J. Sun, X. Li, and X. Yan, Phase evolution, microstructure, electric properties of (Ba1–xBi0.67xNa0.33x)(Ti1–xBi0.33xSn0.67x)O3 ceramics. J. Adv. Ceram. 8, 427 (2019).

    Article  CAS  Google Scholar 

  2. S. Sharma, C.F. Sanchez, J.L. Sanchez Llamazares, J.M. Siqueiros, and O.R. Herrera, Unveiling quantum superparamagnetism by interacting monodomains in multiferroic Er-doped bismuth ferrate nanostructured particles. J. Phys. Chem. C. 125, 6449 (2021).

    Article  CAS  Google Scholar 

  3. S. Sharma, M. Kumar, G. Srinet, J.M. Siqueiros, and O.R. Herrera, Structural, Raman analysis and exchange bias effects in Mn doped multiferroic Bi0.80La0.10Ca0.10Fe1−xMnxO3 ceramics. Ceram. Int. 47(5), 6834 (2021).

    Article  CAS  Google Scholar 

  4. S.M. Selbach, T. Tybell, M. Einarsrud, and T. Grande, The ferroic phase transitions of BiFeO3. Adv. Mater. 20, 3692 (2008).

    Article  CAS  Google Scholar 

  5. G. Catalan, and J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463 (2009).

    Article  CAS  Google Scholar 

  6. Y.H. Chu, L.W. Martin, M.B. Holcomb, and R. Ramesh, Controlling magnetism with multiferroics. Mater. Today 10(10), 16 (2007).

    Article  CAS  Google Scholar 

  7. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.H. Chu, A. Rother, and R. Ramesh, Conduction at domain walls in oxide multiferroics. Nat. Mater. 8(3), 229 (2009).

    Article  CAS  Google Scholar 

  8. S.V. Kiselev, Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. 7, 742 (1963).

    Google Scholar 

  9. N.A. Spaldin, S.W. Cheong, and R. Ramesh, Multiferroics: past, present, and future. Phys. Today 63(10), 38 (2010).

    Article  Google Scholar 

  10. M.S. Bernardo, T. Jardiel, M. Peiteado, F.J. Mompean, M. Garcia-Hernandez, M.A. Garcia, and A.C. Caballero, Intrinsic compositional inhomogeneities in bulk Ti-doped BiFeO3: microstructure development and multiferroic properties. Chem. Mater. 25(9), 1533 (2013).

    Article  CAS  Google Scholar 

  11. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, and S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7(3), 766 (2007).

    Article  CAS  Google Scholar 

  12. D.V. Karpinsky, I.O. Troyanchuk, M.V. Bushinsky, S.A. Gavrilov, M.V. Silibin, and A. Franz, Crystal structure and magnetic properties of Bi1−x CaxFe1−xMn(Ti)xO3 ceramics across the phase boundary. J. Mater. Sci. 51(23), 10506 (2016).

    Article  CAS  Google Scholar 

  13. Y.J. Yoo, J.S. Hwang, Y.P. Lee, J.S. Park, J.Y. Rhee, J.H. Kang, and M.S. Seo, Origin of enhanced multiferroic properties in Dy and Co co-doped BiFeO3 ceramics. J. Magn. Magn. Mater. 374, 669 (2015).

    Article  CAS  Google Scholar 

  14. A. Singh, V. Pandey, R.K. Kotnala, and D. Pandey, Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Phys. Rev. Lett. 101(24), 247602 (2008).

    Article  Google Scholar 

  15. C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, and J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14(46), 15953 (2012).

    Article  CAS  Google Scholar 

  16. M. Kumar, S. Shankar, R.K. Kotnala, and O. Parkash, Evidences of magneto-electric coupling in BFO–BT solid solutions. J. Alloys Compd. 577, 222 (2013).

    Article  CAS  Google Scholar 

  17. L. Yao, X. Wu, S. Yang, and Y. Zhang, Structural and optical properties of Ca doped BiFeO3 thin films prepared by a sol–gel method. Ceram. Int. 43, S470–S473 (2017).

    Article  CAS  Google Scholar 

  18. H. Deng, M. Zhang, Z. Hu, Q. Xie, Q. Zhong, J. Wei, and H. Yan, Enhanced dielectric and ferroelectric properties of Ba and Ti co-doped BiFeO3 multiferroic ceramics. J. Alloys Compd. 582, 273 (2014).

    Article  CAS  Google Scholar 

  19. D. Kan, L. Pálová, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, and I. Takeuchi, Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20(7), 1108 (2010).

    Article  CAS  Google Scholar 

  20. X. Wang, S.Y. Wang, W.F. Liu, X.J. Xi, H. Zhang, F. Guo, and J.B. Yang, Novel electrical conductivity properties in Ca-doped BiFeO3 nanoparticles. J. Nanopart. Res. 17(5), 1 (2015).

    Article  Google Scholar 

  21. Y. Tian, F. Xue, Q. Fu, L. Zhou, C. Wang, H. Gou, and M. Zhang, Structural and physical properties of Ti-doped BiFeO3 nanoceramics. Ceram. Int. 44(4), 4287–4291 (2018).

    Article  CAS  Google Scholar 

  22. S.T. Zhang, Y. Zhang, M.H. Lu, C.F. Du, Y.F. Chen, Z.G. Liu, and X.Q. Pan, Substitution-induced phase transition and enhanced multiferroic properties of Bi1–xLaxFeO3 ceramics. Appl. Phys. Lett. 88(16), 162901 (2006).

    Article  Google Scholar 

  23. B. Wang, X. Tian, X. Song, L. Ma, S. Yu, C. Hao, and Q. Lei, Smart electrorheological behavior of Cr-doped multiferroelectric FeBiO3. Colloid. Surf. A. 461, 184 (2014).

    Article  CAS  Google Scholar 

  24. Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. Xiao, D. Liang, and D. Xiao, Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics. J. Alloys Compd. 546, 57 (2013).

    Article  CAS  Google Scholar 

  25. L.H. Yin, W.H. Song, X.L. Jiao, W.B. Wu, X.B. Zhu, Z.R. Yang, and Y.P. Sun, Multiferroic and magnetoelectric properties of Bi1−xBaxFe1−xMnxO3 system. J. Phys. D Appl. Phys. 42(20), 205402 (2009).

    Article  Google Scholar 

  26. P.M. Razad, K. SaravanKumar, V.R. Reddy, R.J. Choudhary, K. Jeyadheepan, and K. Mahalakshmi, Tailoring the size and magnetization of titanium-doped BiFeO3 Nanorods. J. Electron. Mater. 50, 1075 (2021).

    Article  CAS  Google Scholar 

  27. D.V. Thang, V.Q. Nguyen, N.M. Hung, L.T.M. Anh, N.C. Khang, B.D. Tu, D.T. Xuan Thao, and N.V. Minh, Structural, optical, ferroelectric and ferromagnetic properties of Bi1−xGdxFeO3 materials. J. Electron. Mater. 49, 4443–4449 (2020).

    Article  CAS  Google Scholar 

  28. P. Kumar, N. Shankhwar, A. Srinivasan, and M. Kar, Oxygen octahedra distortion induced structural and magnetic phase transitions in Bi1−xCaxFe1−xMnxO3 ceramics. J. Appl. Phys. 117(19), 194103 (2015).

    Article  Google Scholar 

  29. S. Sharma, M. Kumar, J.M. Siqueiros, and O.R. Herrera, Phase evolution, magnetic study and evidence of spin-two phonon coupling in Ca modified Bi0.80La0.20FeO3 ceramics. J. Alloys Compd. 827, 154223 (2020).

    Article  CAS  Google Scholar 

  30. V. Biju, N. Sugathan, V. Vrinda, and L. Salin, Estimation of lattice strain in nanocrystalline silver from x-ray diffraction line broadening. J. Mater. Sci. 43, 1175–1179 (2008).

    Article  CAS  Google Scholar 

  31. S. Sharma, V. Singh, and R.K. Dwivedi, Electrical properties of (1–x)BFO–(x) PZT multiferroics synthesized by sol–gel method: transition from relaxor to non-relaxor. J. Alloys Compd. 682, 723 (2016).

    Article  CAS  Google Scholar 

  32. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987).

    Article  CAS  Google Scholar 

  33. R.K. Dwivedi, D. Kumar, and O. Parkash, Valence compensated perovskite oxides system Ca1−xLaxTi1−xCrxO3: part-II electrical transport behaviour. J. Mater. Sci. 36, 3649–3655 (2001).

    Article  CAS  Google Scholar 

  34. O. Raymond, R. Font, N. Suárez, J. Portelles, and J.M. Siqueiros, Frequency-temperature response of ferroelectromagneticPb(Fe0.5Nb0.5)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97, 084107 (2005).

    Article  Google Scholar 

  35. S. Sharma, V. Singh, R.K. Dwivedi, R. Ranjan, A. Anshul, S.S. Amritphale, and N. Chandra, Phase transformation, improved ferroelectric and magnetic properties of (1 − x)BiFeO3–xPb(Zr0.52Ti0.48)O3 solid solutions. J. Appl. Phys. 115(22), 224106 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

Subhash Sharma, acknowledges support from Conacyt Catedra Programs through to Project 352-2018. This work was partially supported by PAPIIT-DGAPA-UNAM Grants IT100521 and IN103323. The authors thank R. Campos and P. Casillas for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Sharma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kumar, P., Kumar, M. et al. Investigations on Dielectric, Transport, and Ferroelectric Properties of Ca-Modified Bi0.80La0.20FeO3 Ceramic Synthesized by Solid State Reaction Route. J. Electron. Mater. 52, 4312–4320 (2023). https://doi.org/10.1007/s11664-023-10209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10209-z

Keywords

Navigation