Skip to main content
Log in

Impact of post-annealing of tunnel oxide on the electrical characteristics of Pt–Ti/HfO2/TiN/SiON/n-Si capacitor for flash memory applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the charge storage characteristics of Pt–Ti/HfO2/TiN/SiON/n-Si capacitor are demonstrated for flash memory applications. It presents favorable performance with gate coupling ratio (GCR) of 0.68 and 0.71 for as-deposited and annealed SiON, respectively. The flash memory exhibits a noteworthy memory performance as well as retention time after post-deposition annealing of tunnel oxide (SiON). A memory window of ~ 11.2 V after post-deposition annealing and excellent data retention at room temperature under ± 10 V is also shown. The charge storage density also enhances after annealing which is associated with the large flat band voltage shift. Furthermore, enhanced program/erase speed is attributed to decreased barrier height of both electrons and holes and stronger interface against creation of Si dangling bonds. These results prove that the wary annealing of SiON layer is promising for the improvement of metal floating gate-based memory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.H. Wu, H.C. Chien, C.C. Chan, T.S. Chen, C.H. Kao, SONOS device with tapered bandgap nitride layer. IEEE Trans. Electron. Devices 52, 987–992 (2005)

    Article  CAS  Google Scholar 

  2. K. Kim, J. Choi, Future outlook of NAND flash technology for 40 nm node and beyond, in Proceedings of IEEE 21st NVSMW, 2006, pp. 9–11

  3. J.D. Lee, S.H. Hur, J.D. Choi, Effects of floating-gate interference on NAND flash memory cell operation. IEEE Electron. Device Lett. 23, 264–266 (2002)

    Article  CAS  Google Scholar 

  4. S. Raghunathan, T. Krishnamohan, K. Parat, K. Saraswat, Investigation of ballistic current in scaled floating-gate NAND FLASH and a solution, in Proceedings of IEEE IEDM, 2009, pp. 1–4

  5. G. S. Kar, L. Breuil, P. Blomme, H. Hody, S. Locorotondo, N. Jossart, O. Richard, H. Bender, G. Van den bosch, I. Debusschere, J. Van Houdt, Ultra thin hybrid floating gate and high-k dielectric as IGD enabler of highly scaled planar NAND flash technology, in Proceedings of IEDM, 2012, pp. 1–4

  6. S. Jayanti, X. Yang, R. Suri, V. Misra, Ultimate scalability of TaN metal floating gate with incorporation of high-K blocking dielectrics for flash memory applications, in Proceedings of IEDM, 2010, pp. 1–4

  7. D. Wellekens, P. Blomme, M. Rosmeulen, T. Schram, A. Cacciato, I. Debusschere , S. V. Aerde, J. Van Houdt, An ultra-thin hybrid floating gate concept for sub-20nm NAND flash technologies, in Proceedings of 3rd IEEE IMW, 2011, pp. 1–4

  8. W. Cao, J. Kang, S. Bertolazzi, A. Kis, K. Banarjee, Can 2D-Nanocrystals Extend the Lifetime of Floating-Gate Transistor Based Nonvolatile Memory? IEEE Trans. Electron. Devices 61, 3456–3464 (2014)

    Article  CAS  Google Scholar 

  9. P. Blomme, A. Cacciato, D. Wellekens, L. Breuil, M. Rosmeulen, G.S. Kar, S. Locorotondo, C. Vrancken, O. Richard, I. Debusschere, J. Van Houdt, Hybrid floating gate cell for sub-20-nm NAND flash memory technology. IEEE Electron. Device Lett. 33, 333–335 (2012)

    Article  Google Scholar 

  10. S. Wang, C. He, J. Tang, X. Lu, C. Shen, H. Yu, L. Du, J. Li, R. Yang, D. Shi, G. Zhang, New floating gate memory with excellent retention characteristics, Adv. Electron. Mater. 5 (2019) 1800726(1–7)

  11. International Technology Roadmap for Semiconductors: 2016

  12. L. Breuil, J. Lisoni, P. Blomme, G. Van den bosch, J. Van Houdt, A novel multilayer inter-gate dielectric enabling up to 18V program/erase window for planar NAND flash, in Proceedings of 5th IEEE IMW, 2013, pp. 68–71

  13. P. Blomme, J. De Vos ,J. Van Houdt, Optimization of Al2O3 based VARIOT engineered tunnel dielectric for floating gate flash scaling, in Proceedings of IEEE IMW, 2009, pp. 1–3

  14. P. Blomme, J. Van Houdt, K. De Meyer, Write/erase cycling endurance of memory cells with SiO2/HfO2 tunnel dielectric. IEEE Trans. Device Mater. Rel. 4, 345–352 (2004)

    Article  CAS  Google Scholar 

  15. P. Blomme, Analysis and implementation of high-k based multilayer tunneling barriers for low-voltage flash memory operation, thesis (Katholieke Universiteit Leuven, Department Elektrotechniek, 2005)

  16. G. Chen, Z. Huo, L. Jin, Y. Han, X. Li, S. Liu, Ming Liu, Metal floating gate memory device with SiO2/HfO2 dual-layer as engineered tunneling barrier. IEEE Electron. Device Lett. 35, 744–746 (2014)

    Article  Google Scholar 

  17. U. Ganguly, T. Guarini, D. Wellekens, L. Date, Y. Cho, A. Rohschild, J. Swenberg, Impact of top surface tunnel-oxide nitridation on flash memory performance and reliability. IEEE Electron. Device Lett. 31, 123–125 (2010)

    Article  CAS  Google Scholar 

  18. T. Kim, K. Sarpatwari, S. Koka, H. Wang, Comprehensive understanding on the role of tunnel oxide top nitridation for the reliability of nanoscale flashmemory. IEEE Electron. Device Lett. 34, 396–398 (2013)

    Article  Google Scholar 

  19. J. Kim, J. D. Choi, W. C. Shin, D. J. Kim, H. S. Kim, K. M. Mang, S. T. Ahn and O. H. Kwon, Scaling down of tunnel oxynitride in NAND Flash memory: Oxynitride selection and reliabilities, in Proceedings of 35th Annu. IEEE Int. Rel. Phys. Symp.1997, pp. 12–16

  20. R.B. Beck, A. Jakubowski, Ultrathin oxynitride films for CMOS technology. J. Telecommun. Inf. Technol. 1, 62–69 (2004)

    Google Scholar 

  21. R. Gupta, R. Rajput, R. Prasher, R. Vaid, Structural and electrical characteristics of ALD-HfO2/n-Si gate stack with SiON interfacial layer for advanced CMOS technology. Solid State Sci. 59, 7–14 (2016)

    Article  CAS  Google Scholar 

  22. S. Xie, J. Cai_, Q. Wang, L. Wang, Z. Liu, Properties and morphology of TiN films deposited by atomic layer deposition. Tsinghua Sci. Technol. 19 144–149 (2014)

  23. N.K. Ponon, D.J.R. Appleby, E. Arac, P.J. King, S. Ganti, K.S.K. Kwa, A. O'Neill, Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films. Thin Solid Films 578, 31–37 (2015)

    Article  CAS  Google Scholar 

  24. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie (Physical Electronics, MN, 1995)

    Google Scholar 

  25. K.S. Kim, Y.C. Jang, K.J. Kim, N.E. Lee, S.P. Youn, K.J. Roh, Y.H. Roh, Interface formation and electrical properties of a TiNx/SiO2/Si structure for application in gate electrodes. J. Vac. Sci. Technol. A 19, 1164–1169 (2001)

    Google Scholar 

  26. J. Musschoot, Q. Xie, D. Detuytsche, S.V.D. Berghe, R.L.V. Meirhaeghe, C. Detavernier, Atomic layer deposition of titanium nitride from TDMAT precursor. Microelectron. Eng. 86, 72–77 (2009)

    Article  CAS  Google Scholar 

  27. N. Jiang, H.J. Zhang, S. Bao, Y.G. Shen, Z.F. Zhou, XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias. Phys. B 352, 118–126 (2004)

    Article  CAS  Google Scholar 

  28. A. Rizzo, M.S. Signore, L. Mireghi, T. Di Luccio, Synthesis and characterization of titanium and zirconium oxynitride coatings. Thin Solid Films 517, 5956–5964 (2009)

    Article  CAS  Google Scholar 

  29. M. Drygas, C. Czosnek, R.T. Paine, J.F. Janik, Two-Stage aerosol synthesis of titanium nitride TiN and titanium oxynitride TiOxNynanopowders of spherical particle morphology. Chem. Mater. 18, 3122–3129 (2006)

    Article  CAS  Google Scholar 

  30. N.C. Saha, H.G. Tompkins, Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study. J. App. Phys. 72, 3072–3279 (1992)

    Article  CAS  Google Scholar 

  31. G. Soares, K.P. Bastos, R.P. Pezzi, C. Driemeier, I.J.R. Baumvol, C. Hinkle, G. Lucovsky, Nitrogen bonding, stability, and transport in AlON films on Si. Appl. Phys. Lett. 84, 4992–4994 (2004)

    Article  CAS  Google Scholar 

  32. D.M. Wolfe, B.J. Hinds, F. Wang, G. Lucovsky, B.L. Ward, M. Xu, R.J. Nemanich, D.M. Maher, Thermochemical stability of silicon-oxygen-carbon alloy thin films: a model system for chemical and structural relaxation at SiC-SiO2 interfaces. J. Vac. Sci. Technol. A 17, 2170–2177 (1999)

    Article  CAS  Google Scholar 

  33. I.W. Boyd, Deconvolution of the infrared absorption peak of the vibrational stretching mode of silicon dioxide: evidence for structural order? Appl. Phys. Lett. 51 418–420 (1987)

  34. R.K. Pandey, L.S. Patil, J.P. Bange, D.R. Patil, A.M. Mahajan, D.S. Patil, D.K. Gautam, Growth and characterization of SiON thin films by using thermal-CVD machine. Opt. Mater. 25, 1–7 (2004)

    Article  CAS  Google Scholar 

  35. E.A. Joseph, C. Gross, H.Y. Liu, R.T. Laaksonen, F.G. Celii, Characterization of silicon-rich nitride and oxynitride films for polysilicon gate patterning. I. Physical characterization. J. Vac. Sci. Technol. A 19 (2001) 2483–2489

  36. Z. Yin, F.W. Smith, Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis. Phys. Rev. B 42, 3666–3675 (1990)

    Article  CAS  Google Scholar 

  37. F. Ay, A. Aydinli, Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt. Mater. 26, 33–46 (2004)

    Article  CAS  Google Scholar 

  38. J.W. Elam, M. Schuisky, J.D. Ferguson, S.M. George, Surface chemistry and film growth during TiN atomic layer deposition using TDMAT and NH3. Thin Solid Films 436, 145–156 (2003)

    Article  CAS  Google Scholar 

  39. L.H. Dubois, B.R. Zegarski, G.S. Girolami, Infrared Studies of the surface and gas phase reactions leading to the growth of titanium nitride thin films from tetrakis (dimethylamido) titanium and ammonia. J. Electrochem. Soc. 139, 3603–3609 (1992)

    Article  CAS  Google Scholar 

  40. I. Afanasyev-Charkin, M. Nastasi, Hard Si−N−C coatings produced by pulsed glow discharge deposition. Surf. Coat. Technol. 186, 108–111 (2004)

    Article  CAS  Google Scholar 

  41. C. Oliveira, L. Gonçalves, B. Almeida, C. Tavares, S. Carvalho, F. Vaz, R. Escobar Galindo, M. Henriques, M. Susano, R. Oliveira, XRD and FTIR analysis of Ti-Si-C-ON coatings for biomedical applications. Surf. Coat. Technol. 203 (2008) 490−494

  42. M.Q. Snyder, B.A. McCool, J. DiCarlo, C.P. Tripp, W.J. DeSisto, An infrared study of the surface chemistry of titanium nitride atomic layer deposition on silica from TiCl4 and NH3. Thin Solid Films 514, 97–102 (2006)

    Article  CAS  Google Scholar 

  43. K.S. Schramke, Y. Qin, J.T. Held, K.A. Mkhoyan, U.R. Kortshagen, Nonthermal plasma synthesis of titanium nitride nanocrystals with plasmon resonances at near-infrared wavelengths relevant to photothermal therapy. Appl. Nano Mater. 1, 2869–2876 (2018)

    Article  CAS  Google Scholar 

  44. X.Y. Zhang, C.H. Hsu, Y.S. Cho, S.Y. Lien, W.Z. Zhu, S.Y. Chen, W. Huang, L.G. Xie, L.D. Chen, X.Y. Zou, S.X. Huang, Simulation and fabrication of HfO2 thin films passivating si from a numerical computer and remote plasma ALD. Appl. Sci. 1244, 1–9 (2017)

    Google Scholar 

  45. S.J. Ding, H.B. Chen, X.M. Cui, S. Chen, Q.Q. Sun, P. Zhou, H.L. Lu, D.W. Zhang, C. Shen, Atomic layer deposition of high-density Pt nanodots on Al2O3 film using (MeCp)Pt(Me)3 andO2 precursors for non volatile memory applications. Nanoscale Research Lett. 8, 1–7 (2013)

    Article  Google Scholar 

  46. M.N. Webster, R.F.M. Roes, A.C.M.C. Van Brandenburg, J.H. Klootwijk, A.T.A. Zegers, Metal gates for 0.15 μm CMOS and beyond. in: European solid state device research conference, 1999, pp. 148–151

  47. A. Misra, Novel floating gate materials for flash memory, Ph.D. Thesis, Indian Institute of Technology Bombay, chapter 4, pp. 60, 2014

  48. C.H. Chen, Y.K. Fang, S.F. Ting, W.T. Hseih, C.W. Yang, T.H. Hsu, M.C. Yu, T.L. Lee, S.C. Chen, C.H. Yu, M.S. Liang, Downscaling limit of equivalent oxide thickness in formation of ultra-thin gate dielectric by thermal-enhanced remote plasma nitridation. IEEE Trans. Electron. Devices 49, 840–846 (2002)

    Article  CAS  Google Scholar 

  49. R. Gupta, R. Vaid, Effect of post deposition annealing on ALD ZrO2/SiON gate stacks for advanced CMOS technology. ECS Trans. 75, 67–73 (2016)

    Article  CAS  Google Scholar 

  50. R. Gupta, D. Saikia, R. Vaid, Argon annealed ALD-ZrO2/ SiON gate stack for advanced CMOS devices. ECS Trans. 77, 51–55 (2017)

    Article  CAS  Google Scholar 

  51. J. H. Park S. H. Hur, J. H. Lee, J.T. Park, J.S. Sel, J.W. Kim, S.B. Song, J.Y. Lee, J.H. Lee, S.J. Son, Y.S. Kim, M.C. Park, S.J. Chai, J.D. Choi, U.I. Chung, J.T. Moon, K.T. Kim, K. Kim, B.I. Ryu, 8 Gb MLC (multi-level cell) NAND flash memory using 63 nm process technology, in Proceedings of IEDM, 2004, pp. 873–876

  52. J. Yi Wu, Y. Ting Chen, M. Ho Lin, T. Bor Wu, Ultrathin HfON trapping layer for charge-trap memory made by atomic layer deposition, IEEE Electron. Device Lett. 31 (2010) 993–995

  53. J. Lin, Z.M. Hong, H.Z. Liang, W. Yong, Y.Z. An, J.D. Dan, C.J. Ning, L. Ming, A simple and accurate method for measuring program/erase speed in a memory capacitor structure, Chin. Phys. B 22 (2013)

Download references

Acknowledgements

The authors extend their sincere thanks to CEN, IITB under INUP program sponsored by DIT, MCIT, Govt. of India for providing the facilities for fabrication and characterization. Further, the author Renu Rajput acknowledge the Department of Science and Technology (DST) for providing financial assistance under INSPIRE fellowship (JRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Vaid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaid, R., Rajput, R. Impact of post-annealing of tunnel oxide on the electrical characteristics of Pt–Ti/HfO2/TiN/SiON/n-Si capacitor for flash memory applications. J Mater Sci: Mater Electron 31, 15267–15276 (2020). https://doi.org/10.1007/s10854-020-04091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04091-2

Navigation