Skip to main content

Advertisement

Log in

Solution-combustion-based nickel oxide hole transport layers via fuel regulation in inverted planar perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, metal oxide hole transporting layers (HTLs) have been commonly used in inverted planar perovskite solar cells. Due to high optical transmittance, better long-term stability, and suitable energy band characteristics, NiOx HTLs have been intensively studied. The NiOx materials prepared by solution-combustion method with characteristics of self-energy generation and exothermic reaction have received much attention, which significantly reduces the reaction temperature compared with the traditional sol–gel methods. In this paper, a NiOx film with better conductivity and enhanced carrier extraction was obtained by adjusting the fuel concentration in the nickel oxide precursor solution. It was also confirmed that perovskite film was improved with larger grain size and reduced trap-state densities. As a consequence, by using the 10 ul/ml optimal concentration of acetylacetone in the NiOx precursor solution, the inverted planar perovskite solar cells achieved a maximum power conversion efficiency of 14.37%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Cui, F. Meng, H. Zhang, K. Cao, H. Yuan, Y. Cheng, F. Huang, M. Wang, ACS Appl. Mater. Interfaces. 6, 22862–22870 (2014)

    Article  CAS  Google Scholar 

  2. Y. Bai, S. Xiao, C. Hu, T. Zhang, X. Meng, Q. Li, Y. Yang, K.S. Wong, H. Chen, S. Yang, Nano Energy 34, 58–68 (2017)

    Article  CAS  Google Scholar 

  3. F. Behrouznejad, C.-M. Tsai, S. Narra, E.W.-G. Diau, N. Taghavinia, ACS Appl. Mater. Interfaces. 9, 25204–25215 (2017)

    Article  CAS  Google Scholar 

  4. B.R.-C.E. National Renewable Energy Laboratory, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200218.pdf, (accessed, 2020).

  5. A.S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, S.K. Sarkar, J. Phys. Chem. Lett 5, 1748–1753 (2014)

    Article  CAS  Google Scholar 

  6. Y. Guo, X. Yin, W. Que, J. Alloy. Compd. 722, 839–845 (2017)

    Article  CAS  Google Scholar 

  7. Q. Xue, Y. Bai, M. Liu, R. Xia, Z. Hu, Z. Chen, X.F. Jiang, F. Huang, S. Yang, Y. Matsuo, Adv. Energy Mater. 7, 1602333 (2017)

    Article  Google Scholar 

  8. A.M. Elseman, A.E. Shalan, S. Sajid, M.M. Rashad, A.M. Hassan, M. Li, ACS Appl. Mater. Interfaces. 10, 11699–11707 (2018)

    Article  CAS  Google Scholar 

  9. Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou, Z. Zhao, Q. Chen, Y.-B. Cheng, H. Zhou, J. Mater. Chem. A 5, 6597–6605 (2017)

    Article  CAS  Google Scholar 

  10. X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, ACS Appl. Mater. Interfaces. 9, 2439–2448 (2017)

    Article  CAS  Google Scholar 

  11. P. Zhao, B.J. Kim, H.S. Jung, Mater. Today Energy 7, 267–286 (2018)

    Article  Google Scholar 

  12. D. Forgács, M. Sessolo, H.J. Bolink, J. Mater. Chem. A 3, 14121–14125 (2015)

    Article  Google Scholar 

  13. S. Seo, I.J. Park, M. Kim, S. Lee, C. Bae, H.S. Jung, N.-G. Park, J.Y. Kim, H. Shin, Nanoscale 8, 11403–11412 (2016)

    Article  CAS  Google Scholar 

  14. W. Zhu, C. Bao, B. Lv, F. Li, Y. Yi, Y. Wang, J. Yang, X. Wang, T. Yu, Z. Zou, J. Mater. Chem A 4, 12535–12542 (2016)

    Article  CAS  Google Scholar 

  15. Y. Xia, C. Ran, Y. Chen, Q. Li, N. Jiang, C. Li, Y. Pan, T. Li, J. Wang, W. Huang, J. Mater. Chem. A 5, 3193–3202 (2017)

    Article  CAS  Google Scholar 

  16. J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C. Wen, Adv. Mater. 25, 3727–3732 (2013)

    Article  CAS  Google Scholar 

  17. J.Y. Jeng, K.C. Chen, T.Y. Chiang, P.Y. Lin, T.D. Tsai, Y.C. Chang, T.F. Guo, P. Chen, T.C. Wen, Y.J. Hsu, Adv. Mater. 26, 4107–4113 (2014)

    Article  CAS  Google Scholar 

  18. S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, Nano Lett. 15, 3723–3728 (2015)

    Article  CAS  Google Scholar 

  19. J.H. Park, J. Seo, S. Park, S.S. Shin, Y.C. Kim, N.J. Jeon, H.W. Shin, T.K. Ahn, J.H. Noh, S.C. Yoon, Adv. Mater. 27, 4013–4019 (2015)

    Article  CAS  Google Scholar 

  20. J.W. Jung, C.C. Chueh, A.K.Y. Jen, Adv. Mater. 27, 7874–7880 (2015)

    Article  CAS  Google Scholar 

  21. J. You, L. Meng, T.-B. Song, T.-F. Guo, Y.M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Nat. Nanotechnol. 11, 75 (2016)

    Article  Google Scholar 

  22. X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, J. Shao, ACS Nano 10, 3630–3636 (2016)

    Article  CAS  Google Scholar 

  23. P. Schulz, J.O. Tiepelt, J.A. Christians, I. Levine, E. Edri, E.M. Sanehira, G. Hodes, D. Cahen, A. Kahn, ACS Appl. Mater. Interfaces. 8, 31491–31499 (2016)

    Article  CAS  Google Scholar 

  24. Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, Y. Hao, Adv. Energy Mater. 8, 1703432 (2018)

    Article  Google Scholar 

  25. S. Pang, C. Zhang, H. Dong, D. Chen, W. Zhu, H. Xi, J. Chang, Z. Lin, J. Zhang, Y. Hao, ACS Applied Energy Materials 2, 4700–4707 (2019)

    Article  CAS  Google Scholar 

  26. J. Zhang, W. Mao, X. Hou, J. Duan, J. Zhou, S. Huang, W. Ou-Yang, X. Zhang, Z. Sun, X. Chen, Sol. Energy 174, 1133–1141 (2018)

    Article  CAS  Google Scholar 

  27. B. Ge, H.W. Qiao, Z.Q. Lin, Z.R. Zhou, A.P. Chen, S. Yang, Y. Hou, H.G. Yang, Solar RRL 3, 1900192 (2019)

    Article  Google Scholar 

  28. W. Chen, Y. Wu, J. Fan, A.B. Djurišić, F. Liu, H.W. Tam, A. Ng, C. Surya, W.K. Chan, D. Wang, Adv. Energy Mater. 8, 1703519 (2018)

    Article  Google Scholar 

  29. W. Chen, Y. Zhou, L. Wang, Y. Wu, B. Tu, B. Yu, F. Liu, H.W. Tam, G. Wang, A.B. Djurišić, Adv. Mater. 30, 1800515 (2018)

    Article  Google Scholar 

  30. Y. Wang, T. Mahmoudi, Y.B. Hahn, Adv. Energy Mater. 2000967.

  31. A. Wang, Z. Cao, J. Wang, S. Wang, C. Li, N. Li, L. Xie, Y. Xiang, T. Li, X. Niu, J. Energy Chem. (2020)

  32. Z. Li, B.H. Jo, S.J. Hwang, T.H. Kim, S. Somasundaram, E. Kamaraj, J. Bang, T.K. Ahn, S. Park, H.J. Park, Adv. Sci. 6, 1802163 (2019)

    Article  Google Scholar 

  33. Y. Cheng, M. Li, X. Liu, S.H. Cheung, H.T. Chandran, H.-W. Li, X. Xu, Y.-M. Xie, S.K. So, H.-L. Yip, Nano Energy 61, 496–504 (2019)

    Article  CAS  Google Scholar 

  34. S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J.T.-W. Wang, Nature 571, 245–250 (2019)

    Article  CAS  Google Scholar 

  35. T. Wang, D. Ding, H. Zheng, X. Wang, J. Wang, H. Liu, W. Shen, Solar RRL 3, 1900045 (2019)

    Article  Google Scholar 

  36. M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10, 382 (2011)

    Article  CAS  Google Scholar 

  37. J.W. Hennek, M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 134, 9593–9596 (2012)

    Article  CAS  Google Scholar 

  38. K.V. Manukyan, A. Cross, S. Roslyakov, S. Rouvimov, A.S. Rogachev, E.E. Wolf, A.S. Mukasyan, J. Phys. Chem. C 117, 24417–24427 (2013)

    Article  CAS  Google Scholar 

  39. Y. Bai, H. Chen, S. Xiao, Q. Xue, T. Zhang, Z. Zhu, Q. Li, C. Hu, Y. Yang, Z. Hu, Adv. Func. Mater. 26, 2950–2958 (2016)

    Article  CAS  Google Scholar 

  40. X.W. Yin, J.H. Han, Y. Zhou, H. Nan, Z.B. Yao, M.Q. Tai, X. Li, J.B. Li, N. Wang, H. Lin, Chemistryselect 3, 6802–6809 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The data that support the findings of this study are available from the corresponding author upon reasonable request. This work was supported by the National Natural Science Foundation of China (61974074), the Natural Science Foundation of Tianjin (17JCYBJC21200, 18JCQNJC71800), and the Fundamental Research Funds for the Central Universities, Nankai University (63191101, 63191740, 63191745).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkun Cai.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Cai, H., Su, J. et al. Solution-combustion-based nickel oxide hole transport layers via fuel regulation in inverted planar perovskite solar cells. J Mater Sci: Mater Electron 31, 15225–15232 (2020). https://doi.org/10.1007/s10854-020-04087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04087-y

Navigation