Skip to main content
Log in

Bilayer NiO hole-transporting film for inverted planar perovskite solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel oxide (NiO) is one of the most promising hole transport material in inverted perovskite solar cells due to its advantages including high chemical stability and wide bandgap, which could effectively transport holes and block electrons. However, the limited hole transport ability of NiO induce unsatisfied carrier separation and transfer at NiO/perovskite interface, so the inverted planar perovskite solar cell based on NiO is uncompetitive to the other devices. Here, we successfully fabricated a double-layer NiO hole transport layer, consisting by an inner layer of combustion-synthetic NiO film and an outer layer of hydrothermal process-synthetic NiO, for inverted planar perovskite solar cell. We confirmed that the double-layer NiO could improve charge transfer at NiO/perovskite interface, and decrease carrier recombination loss of the device. Comparatively, the device based on double-layer NiO HTL have achieved a higher fill factor and lower hysteresis effect, resulting in an increased power conversion efficiency (PCE) from 12.6 to 14.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. L. Pazos-Outon, M. Szumilo, R. Lamboll, J. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. Beeson, M. Vrucinic, M. Alsari, H. Snaith, B. Ehrler, R. Friend, F. Deschler, Photon recycling in lead iodide perovskite solar cells. Science 351, 1430 (2016)

    Article  CAS  Google Scholar 

  2. S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, Z. Yu, J. Zhao, Y. Gao, F. De Angelis, J. Huang, Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473 (2019)

    Article  CAS  Google Scholar 

  3. Y. Cheng, Z. Zeng, T. Liu, Y. Wang, C. Rodriguez-Gallegos, H. Liu, X. Liu, M. Thway, D. Khup, A. Khaing, K. Yu, S. Tsang, F. Lin, Amorphous CdO-In2O3 electrode for perovskite-based bifacial and tandem photovoltaic technologies with high energy production. Solar RRL 6, 2100809 (2021)

    Article  Google Scholar 

  4. X. Zhao, J. Chen, N. Park, Importance of oxygen partial pressure in annealing NiO film for high efficiency inverted perovskite solar cells. Solar RRL 3, 1800339 (2019)

    Article  Google Scholar 

  5. J. Yang, W. Tang, R. Yuan, Y. Chen, J. Wang, Y. Wu, W. Yin, N. Yuan, J. Ding, W. Zhang, Defect mitigation using d-penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability. Chem. Sci. 12, 2050 (2021)

    Article  CAS  Google Scholar 

  6. B. Cai, Y. Xing, Z. Yang, W. Zhang, J. Qiu, High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480 (2013)

    Article  CAS  Google Scholar 

  7. H. Shan, W. Xuan, Z. Li, D. Hu, X. Gu, S. Huang, Room temperature hydrogen sulfide sensor based on tributyltin oxide-functionalized perovskite CsPbBr3 quantum dots. ACS Appl. Nano Mater. (2022). https://doi.org/10.1021/acsanm.2c00791

    Article  Google Scholar 

  8. S. Huang, H. Shan, W. Xuan, W. Xu, D. Hu, L. Zhu, C. Huang, W. Sui, C. Xiao, Y. Zhao, Y. Qiang, X. Gu, J. Song, C. Zhou, High-performance humidity sensor based on CsPdBr 3 nanocrystals for noncontact sensing of hydromechanical characteristics of unsaturated soil. Phys. Status Solidi 16, 2200017 (2022)

    CAS  Google Scholar 

  9. J.Z. Song, J.H. Li, X.M. Li, L.M. Xu, Y.H. Dong, H.B. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162 (2015)

    Article  CAS  Google Scholar 

  10. X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D. Xue, B. Chen, A. Johnston, N. Wei, M. Hedhili, M. Wei, A. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T. Anthopoulos, Y. Han, Z. Lu, O. Mohammed, F. Gao, E. Sargent, O. Bakr, Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131 (2020)

    Article  CAS  Google Scholar 

  11. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Efficient and stable largearea perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015)

    Article  CAS  Google Scholar 

  12. F. Ma, Y. Zhao, J. Li, X. Zhang, H. Gu, J. You, Nickel oxide for inverted structure perovskite solar cells, Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 52, 393 (2021)

    Article  CAS  Google Scholar 

  13. W. Lai, K. Lin, T. Guo, J. Lee, Perovskite-based solar cells with nickel-oxidized nickel oxide hole transfer layer. IEEE Trans. Electron Dev. 62, 1590 (2015)

    Article  CAS  Google Scholar 

  14. P. Zhou, B. Li, Z. Fang, W. Zhou, M. Zhang, W. Hu, T. Chen, Z. Xiao, S. Yang, Nitrogen-doped nickel oxide as hole transport layer for high-efficiency inverted planar perovskite solar cells. Solar RRL 3, 1900164 (2019)

    Article  CAS  Google Scholar 

  15. Y. Qin, J. Song, Q. Qiu, Y. Liu, Y. Zhao, L. Zhu, Y. Qiang, High-quality NiO thin film by low-temperature spray combustion method for perovskite solar cells. J. Alloy Compd. 810, 151970 (2019)

    Article  CAS  Google Scholar 

  16. C. Flynn, S. McCullough, L. Li, C. Donley, Y. Kanai, J. Cahoon, Passivation of nickel vacancy defects in nickel oxide solar cells by targeted atomic deposition of boron. J. Phys. Chem. C 120, 16568–16576 (2016)

    Article  CAS  Google Scholar 

  17. J. Sun, J. Lu, B. Li, L. Jiang, A. Chesman, A. Scully, T. Gengenbach, Y. Cheng, J. Jasieniak, Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers. Nano Energy 49, 163 (2018)

    Article  CAS  Google Scholar 

  18. E. Bi, H. Chen, F. Xie, Y. Wu, W. Chen, Y. Su, A. Islam, M. Gratzel, X. Yang, L. Han, Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat Commun. 8, 15330 (2017)

    Article  CAS  Google Scholar 

  19. G. Di Girolamo, F. Di Giacomo, F. Matteocci, A. Marrani, D. Dini, A. Abate, Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chem. Sci. 11, 7746 (2020)

    Article  Google Scholar 

  20. L. Xu, X. Chen, J. Jin, W. Liu, B. Dong, X. Bai, H. Song, P. Reiss, Inverted perovskite solar cells employing doped NiO hole transport layers: a review. Nano Energy 63, 103860 (2019)

    Article  CAS  Google Scholar 

  21. D. Di Girolamo, F. Matteocci, F. Kosasih, G. Chistiakova, W. Zuo, G. Divitini, L. Korte, C. Ducati, A. Di Carlo, D. Dini, A. Abate, Stability and dark hysteresis correlate in NiO-based perovskite solar cells. Adv. Energy Mater. 9, 1901642 (2019)

    Article  Google Scholar 

  22. Y. Liu, J. Song, Y. Qin, Q. Qiu, Y. Zhao, L. Zhu, Y. Qiang, Cu-doped nickel oxide hole transporting layer via efficient low-temperature spraying combustion method for perovskite solar cells. J. Mater. Sci. 30, 15627 (2019)

    CAS  Google Scholar 

  23. K. Kim, C. Takahashi, Y. Abe, M. Kawamura, Effects of Cu doping on nickel oxide thin film prepared by sol-gel solution process. Optik 125, 2899 (2014)

    Article  CAS  Google Scholar 

  24. J. Song, L. Zhao, S. Huang, X. Yan, Q. Qiu, Y. Zhao, L. Zhu, Y. Qiang, H. Li, G. Li, A p-p(+) homojunction-enhanced hole transfer in inverted planar perovskite solar cells. Chemsuschem 14, 1396 (2021)

    Article  CAS  Google Scholar 

  25. J. Jung, C. Chueh, A. Jen, Low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv. Mater. 27, 7874 (2015)

    Article  CAS  Google Scholar 

  26. Q. Qiu, H. Liu, Y. Qin, C. Ren, J. Song, Efficiency enhancement of perovskite solar cells based on Al2O3-passivated nano-nickel oxide film. J. Mater. Sci. 28, 13881 (2020)

    Article  Google Scholar 

  27. Y. Wang, T. Mahmoudi, H. Yang, K. Bahat, J. Yoo, Y. Hahn, Fully-ambient-processed mesoscopic semitransparent perovskite solar cells by islands-structure-MAPbI3-xClx-NiO composite and Al2O3/NiO interface engineering. Nano Energy 49, 59 (2018)

    Article  Google Scholar 

  28. J. Jeng, K. Chen, T. Chiang, P. Lin, T. Tsai, Y. Chang, T. Guo, P. Chen, T. Wen, Y. Hsu, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 24, 4107 (2014)

    Article  Google Scholar 

  29. Y. Bai, H. Chen, S. Xiao, Q. Xue, T. Zhang, Z. Zhu, Q. Li, C. Hu, Y. Yang, Z. Hu, F. Huang, K. Wong, H. Yip, S. Yang, Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv. Funct. Mater. 26, 2950 (2016)

    Article  CAS  Google Scholar 

  30. F. Wang, Y. Zhang, M. Yang, D. Han, L. Yang, L. Fan, Y. Sui, Y. Sun, X. Liu, X. Meng, J. Yang, Interface dipole induced field-effect passivation for achieving 21.7% efficiency and stable perovskite solar cells. Adv. Funct. Mater. 31, 2008052 (2020)

    Article  Google Scholar 

  31. P. Wang, R. Li, B. Chen, F. Hou, J. Zhang, Y. Zhao, X. Zhang, Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv. Mater. 32, 1905766 (2020)

    Article  CAS  Google Scholar 

  32. L. Xu, M. Qian, C. Zhang, W. Lv, J. Jin, J. Zhang, C. Zheng, M. Li, R. Chen, W. Huang, In situ construction of gradient heterojunction using organic VOx precursor for efficient and stable inverted perovskite solar cells. Nano Energy 67, 104244 (2020)

    Article  CAS  Google Scholar 

  33. L. Zhao, X. Sun, Q. Yao, S. Huang, L. Zhu, J. Song, Y. Zhao, Y. Qiang, Field-effect control in hole transport layer composed of Li:NiO/NiO for high-efficient inverted planar perovskite solar cell. Adv. Mater. Interfaces 9, 2101562 (2022)

    Article  CAS  Google Scholar 

  34. Q. Cui, L. Zhao, X. Sun, Q. Yao, S. Huang, L. Zhu, Y. Zhao, J. Song, Y. Qiang, Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer. Chin. Phys. B 31, 038801 (2022)

    Article  Google Scholar 

  35. Y. Chen, Z. Yang, S. Wang, X. Zheng, Y. Wu, N. Yuan, W. Zhang, S. Liu, Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv. Mater. 30, 1805660 (2018)

    Article  Google Scholar 

  36. W. Chen, Y. Wu, J. Fan, A. Djurisic, F. Liu, H. Tam, A. Ng, C. Surya, W. Chan, D. Wang, Z. He, Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 8, 1703519 (2018)

    Article  Google Scholar 

  37. K. Wang, P. Shen, M. Li, S. Chen, M. Lin, P. Chen, T. Guo, Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 11851 (2014)

    Article  CAS  Google Scholar 

  38. J. Song, S. Li, Y. Zhao, J. Yuan, Y. Zhu, Y. Fang, L. Zhu, X. Gu, Y. Qiang, Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements. J. Alloy Compd. 694, 1232 (2017)

    Article  CAS  Google Scholar 

  39. J. Song, Y. Yang, Y. Zhao, M. Che, L. Zhu, X. Gu, Y. Qiang, Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell. Mater. Sci. Eng. B 217, 18 (2017)

    Article  CAS  Google Scholar 

  40. H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. Wong, A. Jen, W. Choy, Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10, 1503 (2016)

    Article  CAS  Google Scholar 

  41. J. Song, Q. Qiu, X. Sun, L. Wang, Surface modification of perovskite film by an amino acid derivative for perovskite solar cell. Org. Electron. 108, 106598 (2022)

    Article  CAS  Google Scholar 

  42. J. Chen, X. Zhao, S. Kim, N. Park, Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv. Mater. 31, 1902902 (2019)

    Article  Google Scholar 

  43. Y. Hou, S. Scheiner, X. Tang, N. Gasparini, M. Richter, N. Li, P. Schweizer, S. Chen, H. Chen, C. Quiroz, X. Du, G. Matt, A. Osvet, E. Spiecker, R. Fink, A. Hirsch, M. Halik, C. Brabec, Suppression of hysteresis effects in organohalide perovskite solar cells. Adv. Mater. Interfaces 4, 1700007 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from Fundamental Research Funds for the Central Universities (2018QNA06).

Funding

Funding was provided by Fundamental Research Funds for the Central Universities (Grant no. 2018QNA06).

Author information

Authors and Affiliations

Authors

Contributions

JS: Writing-review & editing, Project administration, Data curation. QQ: Writing-original draft, Sample characterization. XS: Sample characterization. YZ: Sample characterization, Project administration. YQ: Project managing, Manuscript revision.

Corresponding authors

Correspondence to Jian Song or Yulong Zhao.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 489 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Qiu, Q., Su, X. et al. Bilayer NiO hole-transporting film for inverted planar perovskite solar cell. J Mater Sci: Mater Electron 33, 26464–26473 (2022). https://doi.org/10.1007/s10854-022-09325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09325-z

Navigation