Skip to main content

Advertisement

Log in

Manganese oxides: promising electrode materials for Li-ion batteries and supercapacitors

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured transition metal oxides (NTMOs) have engrossed substantial research curiosity because of their broad diversity of applications in catalysis, solar cells, biosensors, energy storage devices, etc. Among the various NTMOs, manganese oxides and their composites were highlighted for the applications in Li-ion batteries and supercapacitors as electrode materials owing to their environmental friendly nature and various oxidation states. This review concerns the deposition, characterization, and applications of nanostructured manganese oxide thin films (NMOTFs) during the few decades. The deposition and characterization of NMOTFs are discussed. Characterization discussed here enlightens the structural and morphological studies. The focus of the application section includes Li-ion batteries and supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [43]. Copyright 2007 The American Physical Society

Fig. 2

Reproduced with permission from Ref. [71]. Copyright 2015 Elsevier

Fig. 3

Reproduced with permission from Ref. [73]. Copyright 2015 Elsevier

Fig. 4

Reproduced with permission from Ref. [74]. Copyright 2016 Elsevier

Fig. 5

Reproduced with permission from Ref. [139]. Copyright 2017 Elsevier

Fig. 6

Reproduced with permission from Ref. [143]. Copyright 2017 Elsevier

Fig. 7

Reproduced with permission from Ref. [147]. Copyright 2016 Elsevier

Fig. 8

Reproduced with permission from Ref. [148]. Copyright 2016 Elsevier

Fig. 9

Reproduced with permission from Ref. [149]. Copyright 2013 Elsevier

Fig. 10

Reproduced with permission from Ref. [152]. Copyright 2016 Elsevier

Fig. 11

Reproduced with permission from Ref. [153]. Copyright 2015 Elsevier

Fig. 12

Reproduced with permission from Ref. [154]. Copyright 2017 Elsevier

Fig. 13

Reproduced with permission from Ref. [155]. Copyright 2016 Elsevier

Similar content being viewed by others

References

  1. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)

    CAS  Google Scholar 

  2. B.J. Clapsaddle, D.W. Sprehn, A.E. Gash, J.H. Satcher Jr., R.L. Simpson, A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase. J. Non-Cryst. Solids 350, 173–181 (2004)

    CAS  Google Scholar 

  3. M. Nakamura, H. Saitoh, Y. Maejima, S.I. Yamagiwa, S. Kaneko, Adsorption characteristics of organic dyes in aqueous solutions on mixed-oxide gels Adsorptions charakteristica organischer Farbstoffe in wäßrigen Lösungen auf gemischten Oxidgelen. Fresen. Z. Anal. Chem. 335, 573–575 (1989)

    CAS  Google Scholar 

  4. S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles. Chin. Sci. Bull. 56, 1639–1657 (2011)

    CAS  Google Scholar 

  5. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014)

    Google Scholar 

  6. Z. Xun, C. Cai, W. Xing, T. Lu, Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method. J. Electroanal. Chem. 545, 19–27 (2003)

    CAS  Google Scholar 

  7. V. Gupta, T. Kawaguchi, N. Miura, Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co–Ni/Co–Ni oxides composites. Mater. Res. Bull. 44, 202–206 (2009)

    CAS  Google Scholar 

  8. M.V. Reddy, T. Yu, C.H. Sow, Z.X. Shen, C.T. Lim, G.V.S. Rao, B.V.R. Chowdari, α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2792–2799 (2007)

    CAS  Google Scholar 

  9. P. A. Korzhavyi, B. Johansson, Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation SKB (2011). TR-11-08.

  10. D. Su, J. Ma, M. Huang, F. Liu, T. Chen, C. Liu, H. Ni, Manganese oxides-based composite electrodes for supercapacitors. IOP Conf. Ser. 207, 012087 (2017)

    Google Scholar 

  11. J. Cao, Q. Mao, L. Shi, Y. Qian, Fabrication of γ-MnO2/α-MnO2 hollow core/shell structures and their application to water treatment. J. Mater. Chem. 21, 16210–16215 (2011)

    CAS  Google Scholar 

  12. D. Yan, S. Cheng, R.F. Zhuo, J.T. Chen, J.J. Feng, H.T. Feng et al., Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 20, 105706 (2009)

    CAS  Google Scholar 

  13. Y. Tan, L. Meng, Q. Peng, Y. Li, One-dimensional single-crystalline Mn3O4 nanostructures with tunable length and magnetic properties of Mn3O4 nanowires. Chem. Commun. 47, 1172–1174 (2011)

    CAS  Google Scholar 

  14. X. Zhang, Z. Xing, Y. Yu, Q. Li, K. Tang, T. Huang et al., Synthesis of Mn3O4 nanowires and their transformation to LiMn2O4 polyhedrons, application of LiMn2O4 as a cathode in a lithium-ion battery. Cryst. Eng. Commun. 14, 1485–1489 (2012)

    CAS  Google Scholar 

  15. R.E.N.Z.H.I. Ma, Y. Bando, L.I.A.N.Q.I. Zhang, T. Sasaki, Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv. Mater. 16, 918–922 (2004)

    CAS  Google Scholar 

  16. F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, P. Shen, Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038–2044 (2006)

    CAS  Google Scholar 

  17. C. Noguera, Physics and Chemistry at Oxide Surfaces (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  18. A.A. Francis, C. Forsyth. https://rais.ornl.Gov/tox/profiles/mn.shtml. Accessed 12 Oct 2008

  19. M. Nitta, Characteristics of manganese nodules as adsorbents and catalysts: a review. Appl. Catal. 9, 151–176 (1984)

    CAS  Google Scholar 

  20. B. Messaoudi, S. Joiret, M. Keddam, H. Takenouti, Anodic behaviour of manganese in alkaline medium. Electrochim. Acta. 46, 2487–2498 (2001)

    CAS  Google Scholar 

  21. D.R. Lide, Handbook of Chemistry and Physics, 72nd edn. (CRC Press, Boca Raton, 1992)

    Google Scholar 

  22. R.B. King, Encyclopedia of Inorganic Chemistry (Wiley, Chichester, 1994)

    Google Scholar 

  23. J.Y. Luo, H.M. Xiong, Y.Y. Xia, LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. J. Phys. Chem. C 112, 12051–12057 (2008)

    CAS  Google Scholar 

  24. E.F. Pratt, J.F.V.D. Castle, Oxidation by solids. I. Oxidation of selected alcohols by manganese dioxide. J. Org. Chem. 26, 2973–2975 (1961)

    CAS  Google Scholar 

  25. Q. Feng, H. Kanoh, K. Ooi, Manganese oxide porous crystals. J. Mater. Chem. 9, 319–333 (1999)

    CAS  Google Scholar 

  26. Z. Chen, Z. Jiao, D. Pan, Z. Li, M. Wu, C.H. Shek et al., Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure. Chem. Rev. 112, 3833–3855 (2012)

    CAS  Google Scholar 

  27. J.D. Lee, Concise Inorganic Chemistry (Chapman & Hall, Concise Inorganic Chemistry, Bukupedia, 1991)

    Google Scholar 

  28. M. Baldi, E. Finocchio, F. Milella, G. Busca, Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Appl. Catal. B 16, 43–51 (1998)

    CAS  Google Scholar 

  29. K.A.M. Ahmed, H. Peng, K. Wu, K. Huang, Hydrothermal preparation of nanostructured manganese oxides (MnOx) and their electrochemical and photocatalytic properties. Chem. Eng. J. 172, 531–539 (2011)

    CAS  Google Scholar 

  30. H. Gao, F. Xiao, C.B. Ching, H. Duan, Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces 4, 7020–7026 (2012)

    CAS  Google Scholar 

  31. H. Wang, J. Deng, Y. Chen, F. Xu, Z. Wei, Y. Wang, Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors. Nano Res. 9, 2672–2680 (2016)

    CAS  Google Scholar 

  32. H. Cheng, H.M. Duong, D. Jewell, Three dimensional manganese oxide on carbon nanotube hydrogels for asymmetric supercapacitors. RSC Adv. 6, 36954–36960 (2016)

    CAS  Google Scholar 

  33. L. Liu, L. Su, J. Lang, B. Hu, S. Xu, X. Yan, Controllable synthesis of Mn3O4 nanodots@nitrogen-doped graphene and its application for high energy density supercapacitors. J. Mater. Chem. A 5, 5523–5531 (2017)

    CAS  Google Scholar 

  34. Z.Y. Tian, P.M. Kouotou, N. Bahlawane, P.H.T. Ngamou, Synthesis of the catalytically active Mn3O4 spinel and its thermal properties. J. Phys. Chem. C 117, 6218–6224 (2013)

    CAS  Google Scholar 

  35. R. Zou, Z. Zhang, L. Yu, Q. Tian, Z. Chen, J. Hu, A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications. Chem. Eur. J. 17, 13912–13917 (2011)

    CAS  Google Scholar 

  36. F. Gao, J. Qu, Z. Zhao, Q. Zhou, B. Li, J. Qiu, A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon 80, 640–650 (2014)

    CAS  Google Scholar 

  37. J. Feng, S. Ye, X. Lu, Y. Tong, G. Li, Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: a novel and high-performance flexible electrochemical energy storage device. ACS Appl. Mater. Interfaces 7, 11444–11451 (2015)

    CAS  Google Scholar 

  38. Y. Hu, C. Guan, G. Feng, Q. Ke, X. Huang, J. Wang, Flexible asymmetric supercapacitor based on structure-optimized Mn3O4/reduced graphene oxide nanohybrid paper with high energy and power density. Adv. Funct. Mater. 25, 7291–7299 (2015)

    CAS  Google Scholar 

  39. T.A. Saleh, V.K. Gupta, Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep. Purif. Technol. 89, 245–251 (2012)

    CAS  Google Scholar 

  40. S. Fritsch, J. Sarrias, A. Rousset, G.U. Kulkarni, Low-temperature oxidation of Mn3O4 hausmannite. Mater. Res. Bull. 33, 1185–1194 (1998)

    CAS  Google Scholar 

  41. H. Jiang, T. Zhao, C.Y. Yan, J. Ma, C.Z. Li, Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2, 2195–2198 (2010)

    CAS  Google Scholar 

  42. A. Jamal, M.M. Rahman, S.B. Khan, M. Faisal, A.M. Asiri, A.A.P. Khan et al., Hydrothermally preparation and characterization of un-doped manganese oxide nanostructures: efficient photocatalysis and chemical sensing applications. Mater. Res. Soc. Symp. 5, 22–28 (2013)

    CAS  Google Scholar 

  43. C. Franchini, R. Podloucky, J. Paier, M. Marsman, G. Kresse, Ground-state properties of multivalent manganese oxides: density functional and hybrid density functional calculations. Phys. Rev. B 75, 195128 (2007)

    Google Scholar 

  44. B. Sun, Z. Chen, H.S. Kim, H. Ahn, G. Wang, MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J. Power Sources 196, 3346–3349 (2011)

    CAS  Google Scholar 

  45. Y. Chen, Y. Hong, Y. Ma, J. Li, Synthesis and formation mechanism of urchin-like nano/micro-hybrid α-MnO2. J. Alloys Compd. 490, 331–335 (2010)

    CAS  Google Scholar 

  46. P.K. Nayak, N. Munichandraiah, Mesoporous MnO2 synthesized by using a tri-block copolymer for electrochemical supercapacitor studies. Microporous Mesoporous Mater. 143, 206–214 (2011)

    CAS  Google Scholar 

  47. X. Wang, Y. Li, Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880–2881 (2002)

    CAS  Google Scholar 

  48. S.C. Pang, M.A. Anderson, T.W. Chapman, Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 147, 444–450 (2000)

    CAS  Google Scholar 

  49. M. Toupin, T. Brousse, D. Belanger, Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946–3952 (2002)

    CAS  Google Scholar 

  50. H.Y. Lee, S.W. Kim, H.Y. Lee, Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode. Electrochem. Solid-State Lett. 4, A19–A22 (2001)

    CAS  Google Scholar 

  51. H. Kim, B.N. Popov, Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J. Electrochem. Soc. 150, D56–D62 (2003)

    CAS  Google Scholar 

  52. H.Y. Lee, J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999)

    CAS  Google Scholar 

  53. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Elsevier, New York, 2012)

    Google Scholar 

  54. G.D. Moggridge, T. Rayment, R.M. Lambert, An in situ XRD investigation of singly and doubly promoted manganese oxide methane coupling catalysts. J. Catal. 134, 242–252 (1992)

    CAS  Google Scholar 

  55. T. Yamashita, A. Vannice, NO decomposition over Mn2O3and Mn3O4. J. Catal. 163, 158–168 (1996)

    CAS  Google Scholar 

  56. W. Weimin, Y. Yongnian, Z. Jiayu, Selective reduction of nitrobenzene to nitrosobenzene over different kinds of trimanganese tetroxide catalysts. Appl. Catal. A 133, 81–93 (1995)

    CAS  Google Scholar 

  57. B. Boucher, R. Buhl, M. Perrin, Magnetic structure of Mn3O4 by neutron diffraction. J. Appl. Phys. 42, 1615–1617 (1971)

    CAS  Google Scholar 

  58. I.K. Gopalakrishnan, N. Bagkar, R. Ganguly, S.K. Kulshreshtha, Synthesis of superparamagnetic Mn3O4 nanocrystallites by ultrasonic irradiation. J. Cryst. Growth 280, 436–441 (2005)

    CAS  Google Scholar 

  59. A. Withop, R. E. Travagli, U. S. Patent No. 4,093,688 (U. S. Patent and Trademark Office, Washington, DC, 1978)

  60. H. Krampitz, G. Wohner, U. S. Patent No. 6,706,443 (U. S. Patent and Trademark Office, Washington, DC, 2004)

  61. S. Thiagarajan, T.H. Tsai, S.M. Chen, Electrochemical fabrication of nano manganese oxide modified electrode for the detection of H2O2. Int. J. Electrochem. Sci. 6, 2235–2245 (2011)

    CAS  Google Scholar 

  62. H. Unuma, T. Kanehama, K. Yamamoto, K. Watanabe, T. Ogata, M. Sugawara, Preparation of thin films of MnO2 and CeO2 by a modified chemical bath (oxidative-soak-coating) method. J. Mater. Sci. 38, 255–259 (2003)

    CAS  Google Scholar 

  63. C.J. Lind, Hausmannite (Mn3O4) conversion to manganite (γ MnOOH) in dilute oxalate solution. Environ. Sci. Technol. 22, 62–70 (1988)

    CAS  Google Scholar 

  64. G. Xi, Y. Peng, Y. Zhu, L. Xu, W. Zhang, W. Yu, Y. Qian, Preparation of β-MnO2 nanorods through a γ-MnOOH precursor route. Mater. Res. Bull. 39, 1641–1648 (2004)

    CAS  Google Scholar 

  65. X. Sun, X. Wang, L. Qiao, D. Hu, N. Feng, X. Li et al., Electrochemical behaviors of porous SnO2–Sn/C composites derived from pyrolysis of SnO2/poly (vinylidene fluoride). Electrochim. Acta 66, 204–209 (2012)

    CAS  Google Scholar 

  66. H. Bai, Z. Liu, D.D. Sun, S.H. Chan, Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries. Energy 76, 607–613 (2014)

    CAS  Google Scholar 

  67. M. Zhen, Z. Zhang, Q. Ren, L. Liu, Room-temperature synthesis of ultrathin Mn3O4 nanosheets as anode materials for lithium-ion batteries. Mater. Lett. 177, 21–24 (2016)

    CAS  Google Scholar 

  68. X.Y. Yu, H. Hu, Y. Wang, H. Chen, X.W. Lou, Ultrathin MoS2 nanoparticles supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem. Int. Ed. 127, 7503–7506 (2015)

    Google Scholar 

  69. V. Etacheri, J.E. Yourey, B.M. Bartlett, Chemically bonded TiO2–bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano 8, 1491–1499 (2014)

    CAS  Google Scholar 

  70. Y. Zhuang, Z. Ma, Y. Deng, X. Song, X. Zuo, X. Xiao, J. Nan, Sandwich-like Mn3O4/carbon nanofragment composites with a higher capacity than commercial graphite and hierarchical voltage plateaus for lithium ion batteries. Electrochim. Acta 245, 448–455 (2017)

    CAS  Google Scholar 

  71. S.H. Park, W.J. Lee, Hierarchically mesoporous carbon nanofiber/Mn3O4 coaxial nanocables as anodes in lithium ion batteries. J. Power Sources 281, 301–309 (2015)

    CAS  Google Scholar 

  72. X. Liu, C. Chen, Y. Zhao, B. Jia, A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries, J. Nanomater. (2013)

  73. X. Gu, J. Yue, L. Li, H. Xue, J. Yang, X. Zhao, General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes. Electrochim. Acta 184, 250–256 (2015)

    CAS  Google Scholar 

  74. S.K. Park, C.Y. Seong, S. Yoo, Y. Piao, Porous Mn3O4 nanorod/reduced graphene oxide hybrid paper as a flexible and binder-free anode material for lithium ion battery. Energy 99, 266–273 (2016)

    CAS  Google Scholar 

  75. P. Liu, X. Xia, W. Lei, Q. Hao, Rational synthesis of highly uniform hollow core–shell Mn3O4/CuO@TiO2 submicroboxes for enhanced lithium storage performance. Chem. Eng. J. 316, 214–224 (2017)

    CAS  Google Scholar 

  76. S.T. Senthilkumar, Y. Wang, H. Huang, Advances and prospects of fiber supercapacitors. J. Mater. Chem. A 3, 20863–20879 (2015)

    CAS  Google Scholar 

  77. L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014)

    CAS  Google Scholar 

  78. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    CAS  Google Scholar 

  79. L. Dong, C. Xu, Y. Li, Z.H. Huang, F. Kang, Q.H. Yang, X. Zhao, Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J. Mater. Chem. A 4, 4659–4685 (2016)

    CAS  Google Scholar 

  80. S.L. Brock, N. Duan, Z.R. Tian, O. Giraldo, H. Zhou, S.L. Suib, A review of porous manganese oxide materials. Chem. Mater. 10, 2619–2628 (1998)

    CAS  Google Scholar 

  81. S.M. Chen, R. Ramachandran, V. Mani, R. Saraswathi, Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int. J. Electrochem. Sci. 9, 4072–4085 (2014)

    Google Scholar 

  82. W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)

    CAS  Google Scholar 

  83. M. Yeager, W. Du, R. Si, D. Su, N. Marinkovic, X. Teng, Highly efficient K0.15MnO2 birnessite nanosheets for stable pseudocapacitive cathodes. J. Phys. Chem. 116, 20173–20181 (2012)

    CAS  Google Scholar 

  84. A. Schneuwly, R. Gallay, Properties and applications of supercapacitors from the state-of-the-art to future trends, In Proceeding PCIM (2000).

  85. X. Li, B. Wei, Supercapacitors based on nanostructured carbon. Nano Energy 2, 159–173 (2013)

    CAS  Google Scholar 

  86. Y. Dessie, S. Tadesse, R. Eswaramoorthy, Review on manganese oxide based biocatalyst in microbial fuel cell: nanocomposite approach. Mater. Sci. Energy Technol. 3, 136–149 (2020)

    Google Scholar 

  87. R. Dong, Q. Ye, L. Kuang, X. Lu, Y. Zhang, X. Zhang et al., Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl. Mater. Interfaces 5, 9508–9516 (2013)

    CAS  Google Scholar 

  88. H. Chen, J. Jiang, L. Zhang, D. Xia, Y. Zhao, D. Guo et al., In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J. Power Sources 254, 249–257 (2014)

    CAS  Google Scholar 

  89. E. Dolgin, Technology: dressed to detect. Nature 511, S16 (2014)

    Google Scholar 

  90. H.H. Chou, A. Nguyen, A. Chortos, J.W. To, C. Lu, J. Mei et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6, 8011 (2015)

    CAS  Google Scholar 

  91. M. Ha, J. Park, Y. Lee, H. Ko, Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano 9, 3421–3427 (2015)

    CAS  Google Scholar 

  92. U.M. Patil, R.R. Salunkhe, K.V. Gurav, C.D. Lokhande, Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl. Surf. Sci. 255, 2603–2607 (2008)

    CAS  Google Scholar 

  93. H. Fang, S. Zhang, T. Jiang, R. Lin, Y. Lin, One-step synthesis of Ni/Ni (OH)2@ multiwalled carbon nanotube coaxial nanocable film for high performance supercapacitors. Electrochim. Acta 125, 427–434 (2014)

    CAS  Google Scholar 

  94. A.K. Mittal, M.J. Kumar, A brief review of electrode materials for supercapacitors. Nanosci. Nanotech. 13, 263 (2011)

    Google Scholar 

  95. J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Mater. Sci. 321, 651–652 (2008)

    CAS  Google Scholar 

  96. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    CAS  Google Scholar 

  97. Y.M. Cai, Z.Y. Qin, L. Chen, Effect of electrolytes on electrochemical properties of graphene sheet covered with polypyrrole thin layer. Progress Nat. Sci: Mater. Int. 21, 460–466 (2011)

    Google Scholar 

  98. A.I. Inamdar, Y. Kim, S.M. Pawar, J.H. Kim, H. Im, H. Kim, Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J. Power Sources 196, 2393–2397 (2011)

    CAS  Google Scholar 

  99. S.G. Sayyed, M.A. Mahadik, A.V. Shaikh, J.S. Jang, H.M. Pathan, Nano-metal oxide based supercapacitor via electrochemical deposition. ES Energy Environ. 3, 25–44 (2019)

    Google Scholar 

  100. D. Lozano-Castello, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon 41, 1765–1775 (2003)

    CAS  Google Scholar 

  101. T. Chen, H. Peng, M. Durstock, L. Dai, High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci. Rep. 4, 3612 (2014)

    Google Scholar 

  102. Y. Li, J. Dong, J. Zhang, X. Zhao, P. Yu, L. Jin, Q. Zhang, Nitrogen-doped carbon membrane derived from polyimide as free-standing electrodes for flexible supercapacitors. Small 11, 3476–3484 (2015)

    CAS  Google Scholar 

  103. J. Li, Advanced materials and methods for the fabrication of electrochemical supercapacitors., Ph.D. dissertation, McMaster University, Canada (2009).

  104. W. Wang, T. Yang, G. Yan, H. Li, Synthesis of Mn3O4 hollow octahedrons and their possible growth mechanism. Mater. Lett. 82, 237–239 (2012)

    CAS  Google Scholar 

  105. Y.F. Lee, K.H. Chang, C.C. Hu, Y.H. Chu, Designing tunable microstructures of Mn3O4 nanoparticles by using surfactant-assisted dispersion. J. Power Sources 206, 469–475 (2012)

    Google Scholar 

  106. F. Yang, M. Zhao, Q. Sun, Y. Qiao, A novel hydrothermal synthesis and characterisation of porous Mn3O4 for supercapacitors with high rate capability. RSC Adv. 5, 9843–9847 (2015)

    CAS  Google Scholar 

  107. T. Yousefi, A.N. Golikand, M.H. Mashhadizadeh, M. Aghazadeh, High temperature and low current density synthesis of Mn3O4 porous nano spheres: characterization and electrochemical properties. Curr. Appl. Phys. 12, 544–549 (2012)

    Google Scholar 

  108. Y. Xiao, Y. Cao, Y. Gong, A. Zhang, J. Zhao, S. Fang et al., Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles–graphene nanocomposites. J. Power Sources 246, 926–933 (2014)

    CAS  Google Scholar 

  109. L. Niu, J. Wang, W. Hong, J. Sun, Z. Fan, X. Ye et al., Solvothermal synthesis of Ni/reduced graphene oxide composites as electrode material for supercapacitors. Electrochim. Acta 123, 560–568 (2014)

    CAS  Google Scholar 

  110. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach et al., Graphene-based composite materials. Nature 442, 282 (2006)

    CAS  Google Scholar 

  111. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    CAS  Google Scholar 

  112. Z.S. Wu, D.W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20, 3595–3602 (2010)

    CAS  Google Scholar 

  113. B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Mn3O4 nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. Electrochim. Acta 55, 6812–6817 (2010)

    CAS  Google Scholar 

  114. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48, 3825–3833 (2010)

    CAS  Google Scholar 

  115. J. Chen, N. Chen, X. Feng, W. Hou, Preparation of shape-controlled graphene/Co3O4 composites for supercapacitors. J. Mater. Eng. Perform. 25, 3845–3851 (2016)

    CAS  Google Scholar 

  116. D. Wang, Y. Li, Q. Wang, T. Wang, Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J. Solid State Electr. 16, 2095–2102 (2012)

    CAS  Google Scholar 

  117. Y. Shao, H. Wang, Q. Zhang, Y. Li, High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J. Mater. Chem. C 1, 1245–1251 (2013)

    CAS  Google Scholar 

  118. H. Zhang, X. Zhang, D. Zhang, X. Sun, H. Lin, C. Wang, Y. Ma, One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. J. Phys. Chem. B 117, 1616–1627 (2013)

    CAS  Google Scholar 

  119. P. Subramanian, J. Niedziolka-Jonsson, A. Lesniewski, Q. Wang, M. Li, R. Boukherroub, S. Szunerits, Preparation of reduced graphene oxide–Ni(OH)2 composites by electrophoretic deposition: application for non-enzymatic glucose sensing. J. Mater. Chem. A 2, 5525–5533 (2014)

    CAS  Google Scholar 

  120. S. Wang, S.P. Jiang, X. Wang, Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim. Acta 56, 3338–3344 (2011)

    CAS  Google Scholar 

  121. G. Jin, X. Xiao, S. Li, K. Zhao, Y. Wu, D. Sun, F. Wang, Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim. Acta 178, 689–698 (2015)

    CAS  Google Scholar 

  122. B.K. Kuila, S.M. Zaeem, S. Daripa, K. Kaushik, S.K. Gupta, S. Das, Mesoporous Mn3O4 coated reduced graphene oxide for high-performance supercapacitor applications. Mater. Res. Express 6, 015037 (2018)

    Google Scholar 

  123. K.Y. Yasoda, M.S. Kumar, S.K. Batabyal, Polyaniline decorated manganese oxide nanoflakes coated graphene oxide as a hybrid-supercapacitor for high performance energy storage application, Ionics 1–8 (2019).

  124. A.U. Ubale, M.R. Belkhedkar, Y.S. Sakhare, A. Singh, C. Gurada, D.C. Kothari, Characterization of nanostructured Mn3O4 thin films grown by SILAR method at room temperature. Mater. Chem. Phys. 136, 1067–1072 (2012)

    CAS  Google Scholar 

  125. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, S.M. Pawar, V.J. Fulari, C.D. Lokhande, A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. J. Alloys Compd. 484, 218–221 (2009)

    CAS  Google Scholar 

  126. Y. Luo, T. Yang, Z. Li, B. Xiao, M. Zhang, High performance of Mn3O4 cubes for supercapacitor applications. Mater. Lett. 178, 171–174 (2016)

    CAS  Google Scholar 

  127. X. Zhang, P. Yu, D. Zhang, H. Zhang, X. Sun, Y. Man, Room temperature synthesis of Mn3O4 nanoparticles: characterization, electrochemical properties and hydrothermal transformation to g-MnO2 nanorods. Mater. Lett. 92, 401–404 (2013)

    CAS  Google Scholar 

  128. L. Wang, L. Chen, Y. Li, H. Ji, G. Yang, Preparation of Mn3O4 nanoparticles at room condition for supercapacitor application. Powder Technol. 235, 76–81 (2013)

    CAS  Google Scholar 

  129. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, S.M. Pawar, C.D. Lokhande, A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl. Surf. Sci. 256, 4411–4416 (2010)

    CAS  Google Scholar 

  130. V. Nulu, J.S. Moon, W.W. Park, H. Song, K.Y. Sohn, Self-assembly of Mn3O4 nanoparticles into mesoporous microstructures for use as supercapacitor electrode material. Int. J. Electrochem. Sci. 13, 8313–8321 (2018)

    CAS  Google Scholar 

  131. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, C.D. Lokhande, Conversion of interlocked cube-like Mn3O4 into nanoflakes of layered birnessite MnO2 during supercapacitive studies. J. Alloys Compd. 496, 370–375 (2010)

    CAS  Google Scholar 

  132. J. Zhang, Y. Wang, Y. Qin, C. Yu, L. Cui, X. Shu et al., A facile one-step synthesis of Mn3O4 nanoparticles-decorated TiO2 nanotube arrays as high performance electrode for supercapacitors. J. Solid State Chem. 246, 269–277 (2017)

    CAS  Google Scholar 

  133. A.A. Yadav, S.N. Jadhav, D.M. Chougule, P.D. Patil, U.J. Chavan, Y.D. Kolekar, Spray deposited Hausmannite Mn3O4 thin films using aqueous/organic solvent mixture for supercapacitor applications. Electrochim. Acta 206, 134–142 (2016)

    CAS  Google Scholar 

  134. G.R. Xu, J.J. Shi, W.H. Dong, Y. Wen, X.P. Min, A.P. Tang, One-pot synthesis of a Ni–Mn3O4 nanocomposite for supercapacitors. J. Alloys Compd. 630, 266–271 (2015)

    CAS  Google Scholar 

  135. T. Xiong, W.S.V. Lee, X. Huang, J. Xue, Mn3O4/Reduced graphene oxide based supercapacitor with ultra-long cyclic performance. J. Mater. Chem. A 5, 12762–12768 (2017)

    CAS  Google Scholar 

  136. L. Li, K.H. Seng, Z.X. Chen, H.K. Liu, I.P. Nevirkovets, Z.P. Guo, Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochim. Acta 87, 801–808 (2013)

    CAS  Google Scholar 

  137. P. Rosaiah, J. Zhu, O. Hussain, Y. Qiu, Synthesis of flower-like reduced graphene oxide–Mn3O4 nanocomposite electrodes for supercapacitors. Appl. Phys. A 124, 597 (2018)

    Google Scholar 

  138. J. Xu, X. Fan, Q. Xia, Z. Shao, B.P. Zeheng, Y. Zhangxian, C.W. Zhang, A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. J. Alloys Compd. 685, 949–956 (2016)

    CAS  Google Scholar 

  139. S. Chen, L. Wang, M. Huang, L. Kang, Z. Lei, H. Xu et al., Reduced graphene oxide/Mn3O4 nanocrystals hybrid fiber for flexible all-solid-state supercapacitor with excellent volumetric energy density. Electrochim. Acta 242, 10–18 (2017)

    CAS  Google Scholar 

  140. N. Zhang, P. Qi, Y.H. Ding, C.J. Huang, J.Y. Zhang, Y.Z. Fang, A novel reduction synthesis of the graphene/Mn3O4 nanocomposite for supercapacitors. J. Solid State Chem. 237, 378–384 (2016)

    CAS  Google Scholar 

  141. L. Zhu, S. Zhang, Y. Cui, H. Song, X.H. Chen, One step synthesis and capacitive performance of graphene nanosheets/Mn3O4 composite. Electrochim. Acta 89, 18–23 (2013)

    CAS  Google Scholar 

  142. H.Y. Wang, D.G. Li, H.L. Zhu, Y.X. Qi, H. Li, N. Lun, Y.J. Bai, Mn3O4/Ni(OH)2 nanocomposite as an applicable electrode material for pseudocapacitors. Electrochim. Acta 249, 155–165 (2017)

    CAS  Google Scholar 

  143. A.V. Radhamani, R. Rao, Tunable supercapacitance of electrospun Mn3O4 beaded chains via charge-discharge cycling and control parameters. Appl. Surf. Sci. 403, 601–611 (2017)

    CAS  Google Scholar 

  144. K.A.M. Ahmed, Q.M. Zeng, K.B. Wu, K.X. Huang, Mn3O4 nanoplates and nanoparticles: synthesis, characterization, electrochemical and catalytic properties. J. Solid State Chem. 183, 744–751 (2010)

    CAS  Google Scholar 

  145. D.P. Dubal, D.S. Dhawale, R.R. Salnkhe, V.J. Fulari, C.D. Lokhande, Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. J. Alloys Compd. 497, 166–170 (2010)

    CAS  Google Scholar 

  146. S.R. Majid, Electrodeposited Mn3O4-NiO-Co3O4 as a composite electrode material for electrochemical capacitor. Electrochim. Acta 175, 193–201 (2015)

    Google Scholar 

  147. C. Zhang, L. Wang, Y. Zhao, Y. Tian, J. Liang, Self-assembly synthesis of graphene oxide double-shell hollow-spheres decorated with Mn3O4 for electrochemical supercapacitors. Carbon 107, 100–108 (2016)

    CAS  Google Scholar 

  148. X.J. Li, Z.W. Song, Y. Zhao, Y. Wang, X.C. Zhao, M. Liang et al., Vertically porous nickel thin film supported Mn3O4 for enhanced energy storage performance. J. Colloid Interface Sci. 483, 17–25 (2016)

    CAS  Google Scholar 

  149. G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim. Acta 92, 205–215 (2013)

    CAS  Google Scholar 

  150. L. Wang, Y. Li, Z. Han, L. Chen, B. Qian, X. Jiang, J. Pinto, G. Yang, Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/grapheme. J. Mater. Chem. A 1, 8385–8397 (2013)

    CAS  Google Scholar 

  151. P.T. Bui, J.H. Song, Z.Y. Li, M.S. Akhtar, O.B. Yang, Low temperature solution processed Mn3O4 nanoparticles: enhanced performance of electrochemical supercapacitors. J. Alloys Compd. 694, 560–567 (2017)

    CAS  Google Scholar 

  152. X. Yang, Y. He, Y. Bai, J. Zhang, L. Kang, H. Xu et al., Mn3O4 nanocrystalline/graphene hybrid electrode with high capacitance. Electrochim. Acta 188, 398–405 (2016)

    CAS  Google Scholar 

  153. Y. Luo, H. Zhang, L. Wang, M. Zhang, T. Wang, Fixing graphene-Mn3O4 nanosheets on carbon cloth by a poles repel-assisted method to prepare flexible binder-free electrodes for supercapacitors. Electrochim. Acta 180, 983–989 (2015)

    CAS  Google Scholar 

  154. L.L. Wu, D.L. Zhao, X.W. Cheng, Z.W. Ding, T. Hu, S. Meng, Nanorod Mn3O4 anchored on graphene nanosheet as anode of lithium-ion batteries with enhanced reversible capacity and cyclic performance. J. Alloys Compd. 728, 383–390 (2017)

    CAS  Google Scholar 

  155. M. Wang, H. Fei, P. Zhang, L. Yin, Hierarchically layered MoS2/Mn3O4 hybrid architectures for electrochemical supercapacitors with enhanced performance. Electrochim. Acta 209, 389–398 (2016)

    CAS  Google Scholar 

  156. K. Makgopa, K. Raju, P.M. Ejikeme, K.I. Ozoemena, High-performance Mn3O4/onion-like carbon (OLC) nanohybrid pseudocapacitor: unravelling the intrinsic properties of OLC against other carbon supports. Carbon 117, 20–32 (2017)

    CAS  Google Scholar 

  157. M. Aghazadeh, M. Asadi, M.R. Ganjali, P. Norouzi, B. Sabour, M. Emamalizadeh, Template-free preparation of vertically-aligned Mn3O4 nanorods as high supercapacitive performance electrode material. Thin Solid Films 634, 24–32 (2017)

    CAS  Google Scholar 

  158. Y.Z. Song, R.X. Zhao, K.K. Zhang, J.J. Ding, X.M. Lv, M. Chen, J.M. Xie, Facile synthesis of Mn3O4/double-walled carbon nanotube nanocomposites and its excellent supercapacitive behavior. Electrochim. Acta 230, 350–357 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Shoyebmohamad Shaikh and Miss. Saima Sayyed for their help during the preparation of review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. U. Ubale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ubale, A.U., Waghmare, M.A., Iqbal, K.S. et al. Manganese oxides: promising electrode materials for Li-ion batteries and supercapacitors. J Mater Sci: Mater Electron 31, 14003–14021 (2020). https://doi.org/10.1007/s10854-020-04033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04033-y

Navigation