Skip to main content
Log in

Thermal conductive epoxy adhesive with binary filler system of surface modified hexagonal boron nitride and α-aluminum oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we prepared the epoxy-based adhesives with a binary filler system, which was composed of organosilicon modified hexagonal BN (h-BN) and α-Al2O3. H-BN platelets and α-Al2O3 nanoparticles were decorated by aminopropyltrimethoxysilane (APTMS) and glycidylpropyltrimethoxysilane (GPTMS), respectively, to form covalent links to the filler/polymer matrix interface. The surface chemical composition was investigated by Fourrier transform infrared spectroscopy (FTIR) and thermogravimetry analysis (TGA), which demonstrated that the modifiers were successfully grafted onto the surface of fillers. This modification has been confirmed beneficial to thermal conductivity so that the thermal conductivity of adhesives incorporated with modified binary fillers could reach 0.85 w/m k, which is 10% more than specimen filled with unmodified fillers, because covalent links strengthened the interface and prohibited heat diffusion. Modified Hashin–Shtrikman model was utilized to analyze thermal resistance of the binary filler system, indicating that adhesives filled with modified fillers displayed lower thermal resistance. The enhancement of interface also brought about some other positive effect, especially in the decreasing of dielectric constant (< 4.3 at 1000 Hz) and the low values of dielectric loss tangent (10–3) and high electronic resistance (> 1014). Furthermore, the mechanical strength is significantly improved when the modified binary fillers were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Yao, X. Zeng, R. Sun et al., ACS Appl. Mater. Interfaces 8, 15645 (2016)

    Article  CAS  Google Scholar 

  2. X. Zhao, L. Song, X. Zhu et al., Composites A 113, 287 (2018)

    Article  CAS  Google Scholar 

  3. H. Wu, M.R. Kessler, ACS Appl. Mater. Interfaces 7, 5915 (2015)

    Article  CAS  Google Scholar 

  4. W. Lei, V.N. Mochalin, D. Liu et al., Nat. Commun. 6, 8849 (2015)

    Article  CAS  Google Scholar 

  5. C. Zhang, Y. He, Y. Zhan et al., Polym. Adv. Technol. 28, 214 (2017)

    Article  CAS  Google Scholar 

  6. D.S. Muratov, A.A. Stepashkin, S.M. Anshin et al., J. Alloys Compd. 735, 1200 (2018)

    Article  CAS  Google Scholar 

  7. J. Fu, L. Shi, D. Zhang et al., Polym. Eng. Sci. 50, 1809 (2010)

    Article  CAS  Google Scholar 

  8. H.J. Ahn, Y.J. Eoh, S.D. Park et al., Thermochim. Acta 590, 138 (2014)

    Article  CAS  Google Scholar 

  9. S. Ryu, T. Oh, J. Kim, RSC Adv. 8, 22846 (2018)

    Article  CAS  Google Scholar 

  10. T. Morishita, N. Takahashi, RSC Adv. 7, 36450 (2017)

    Article  CAS  Google Scholar 

  11. H. Hirano, J. Kadota, T. Yamashita, et al. World Acad. Sci. Eng. Technol. (2012)

  12. I. Jang, K.-H. Shin, I. Yang et al., Colloids Surf., A 518, 64 (2017)

    Article  CAS  Google Scholar 

  13. D.S. Muratov, D.V. Kuznetsov, I.A. Il’inykh et al., Compos. Sci. Technol. 111, 40 (2015)

    Article  CAS  Google Scholar 

  14. C. Kizilkaya, Y. Mülazim, M. Vezir Kahraman et al., J. Appl. Polym. Sci. 124, 706 (2012)

    Article  CAS  Google Scholar 

  15. S. Ryu, K. Kim, J. Kim. Polym. Compos. 39, 1692 (2018)

    Article  Google Scholar 

  16. S. Ryu, K. Kim, J. Kim. Polym. Adv. Technol. 28, 1489 (2017)

    Article  CAS  Google Scholar 

  17. L. Fang, C. Wu, R. Qian et al., RSC Adv. 4, 21010–21017 (2014)

    Article  CAS  Google Scholar 

  18. Y. Guo, Z. Lyu, X. Yang et al., Composites B 164, 732 (2019)

    Article  CAS  Google Scholar 

  19. S.L. Chung, J.S. Lin, Molecules 21, 670 (2016)

    Article  Google Scholar 

  20. K. Kim, M. Kim, Y. Hwang et al., Ceram. Int. 40, 2047 (2014)

    Article  CAS  Google Scholar 

  21. M. Derradji, X. Song, A.Q. Dayo et al., Appl. Therm. Eng. 115, 630 (2017)

    Article  CAS  Google Scholar 

  22. C. Yu, J. Zhang, W. Tian et al., RSC Adv. 8, 21948 (2018)

    Article  CAS  Google Scholar 

  23. W. Bian, T. Yao, M. Chen et al., Compos. Sci. Technol. 168, 420 (2018)

    Article  CAS  Google Scholar 

  24. Y.-K. Kim, J.-Y. Chung, J.-G. Lee et al., Composites A 98, 184 (2017)

    Article  CAS  Google Scholar 

  25. Z. Zheng, M. Cox, B. Li, J. Mater. Sci. 53, 66 (2018)

    Article  CAS  Google Scholar 

  26. A. Ares, A. Lasagabaster, M.J. Abad et al., J. Compos. Mater. 48, 3141 (2013)

    Article  Google Scholar 

  27. F. Yuan, W. Jiao, F. Yang et al., RSC Adv. 7, 43380 (2017)

    Article  CAS  Google Scholar 

  28. A. Permal, M. Devarajan, H.L. Hung et al., J. Mater. Eng. Perform. 27, 1296 (2018)

    Article  CAS  Google Scholar 

  29. H. Chen, V.V. Ginzburg, J. Yang et al., Prog. Polym. Sci. 59, 41 (2016)

    Article  CAS  Google Scholar 

  30. I.-L. Ngo, S.V. PrabhakarVattikuti, C. Byon, Int. J. Heat Mass Transf. 114, 727 (2017)

    Article  CAS  Google Scholar 

  31. I.L. Ngo, C. Byon, B.J. Lee, Int. J. Heat Mass Transf. 126, 474 (2018)

    Article  Google Scholar 

  32. C. Zhang, G.C. Stevens, Dielectric properties of boron nitride filled epoxy composites, in Conference on Electrical Insulation and Dielectric Phenomena (2006), p. 19

  33. J. Gu, X. Meng, Y. Tang et al., Composites A 92, 27 (2017)

    Article  CAS  Google Scholar 

  34. Z. Dang, M. Zheng, 7-multiphase/multicomponent dielectric polymer materials with high permittivity and high breakdown strength, in Dielectric polymer materials for high-density energy storage, ed. by Z. Dang (William Andrew Publishing, Oxford, 2018), pp. 247–287

    Chapter  Google Scholar 

  35. D. Yang, M. Tian, D. Li et al., J. Mater. Chem. A 1, 12276–12284 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51603015), Science Program of Beijing Municipal Education Commission (KM202010017002) and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (PCOM201918).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dahai Gao or Yuhua Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Yu, L., Li, M. et al. Thermal conductive epoxy adhesive with binary filler system of surface modified hexagonal boron nitride and α-aluminum oxide. J Mater Sci: Mater Electron 31, 14681–14690 (2020). https://doi.org/10.1007/s10854-020-04031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04031-0

Navigation