Skip to main content
Log in

Fe doping effect on the structural, ferroelectric and magnetic properties of polycrystalline BaTi1−xFexO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BaTi1−xFexO3 (x = 0–0.08) ceramics were prepared by conventional solid-state reaction. The Fe doping effect on the structure, electrical and magnetic properties was analyzed. The Fe substitution would reduce the degree of tetragonality and ferroelectricity. The hexagonal phase began to emerge and increased after x = 0.04 by the X-ray diffraction. Meanwhile, ferroelectricity is diminished due to an increase of the non-ferroelectric hexagonal and pinning of domain wall motioned by oxygen vacancies with the increasing Fe substitution. It is found that the nonlinear change of magnetic properties with the increasing Fe concentration. The critical role of the valence state of Fe ions and the accompanied oxygen vacancies on the magnitude of magnetic properties is discussed. Our investigations suggest that the competition of Fe4+–O2−–Fe4+, Fe3+–O2−–Fe4+ and Fe3+–O2−–Fe3+ interaction are coexisted, and the Fe4+–O2−–Fe4+ super-exchange interaction is responsible for the larger magnetism at x = 0.04. From the analyze of XPS spectra, the higher content of Fe4+ and lower oxygen vacancies at x = 0.04 verify that Fe4+–O2−–Fe4+ super-exchange interaction is the origin of larger magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Nucara, W.S. Mohamed, L. Baldassarre, S. Koval, J. Lorenzana, R. Fittipaldi, G. Balakrishnan, A. Vecchione, P. Calvani, Phys. Rev. B 90, 014304 (2014)

    Google Scholar 

  2. W.S. Mohamed, A. Nucara, G. Calestani, F. Mezzadri, E. Gilioli, F. Capitani, P. Postorino, P. Calvani, Phys. Rev. B 92, 054306 (2015)

    Google Scholar 

  3. F. Capitani, S. Koval, R. Fittipaldi, S. Caramazza, E. Paris, W.S. Mohamed, J. Lorenzana, A. Nucara, L. Rocco, A. Vecchione, P. Postorino, P. Calvani, Phys. Rev. B 91, 214308 (2015)

    Google Scholar 

  4. M. Corasaniti, P. Barone, A. Nucara, M. Ortolani, L. Baldassarre, R. Fittipaldi, V. Granata, L. Rocco, A. Vecchione, W.S. Mohamed, J. Lorenzana, P. Calvani, Phys. Rev. B 96, 085115 (2017)

    Google Scholar 

  5. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    CAS  Google Scholar 

  6. W. Prellier, A. Fouchet, B. Mercey, J. Phys. Condens. Matter 15, 1583–1601 (2003)

    Google Scholar 

  7. N. Samarth, Semiconductor physics: magnetic manipulations. Nature 442, 359–360 (2006)

    CAS  Google Scholar 

  8. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488–1495 (2001)

    CAS  Google Scholar 

  9. F. Gheorghiua, C.E. Ciomagab, M. Simenasc, M. Airimioaeid, S. Qiaoe, S. Tascua, V. Kalendrac, J. Banysc, O.G. Avadaneid, L. Mitoseriud, Ceram. Int. 44, 20862–20870 (2018)

    Google Scholar 

  10. T.L. Phan, P.D. Thang, T.A. Ho, T.V. Manh, T.D. Thanh, V.D. Lam, N.T. Dang, S.C. Yu, J. Appl. Phys. 117, 17D904 (2015)

    Google Scholar 

  11. P. Yadav, S. Sharma, N.P. Lalla, Ceram. Int. 43, 13339–13344 (2017)

    CAS  Google Scholar 

  12. P.T. Phong, B.T. Huy, Y.-I. Lee, I.-J. Lee, J. Alloys Compd. 583, 237–243 (2014)

    CAS  Google Scholar 

  13. X.K. Wei, Y.T. Su, Y. Sui, Q.H. Zhang, Y. Yao, C.Q. Jin, R.C. Yu, J. Appl. Phys. 110, 114112 (2011)

    Google Scholar 

  14. F.T. Lin, D.M. Jiang, X.M. Ma, W.Z. Shi, J. Magn. Magn. Mater. 320, 691–694 (2008)

    CAS  Google Scholar 

  15. T. Chakraborty, S. Ray, M. Itoh, Phys. Rev. B 83, 1296–1323 (2011)

    Google Scholar 

  16. P.E. Rubavathi, L. Venkidu, M.V. Babu, R.V. Raman, B. Bagyalakshmi, S.M. Kader, K. Baskar, M. Muneeswaran, N.V. Giridharan, B. Sundarakannan, J. Mater. Sci.: Mater. Electron. 30, 5706–5717 (2019)

    Google Scholar 

  17. F. Lin, W.Z. Shi, J. Alloys Compd. 475, 64–69 (2009)

    CAS  Google Scholar 

  18. J. Lombardi, L. Yang, F.A. Pearsall, N. Farahmand, G. Zheng, S.J.L. Billinge, S. O’Brien, Chem. Mater. 31, 1318–1335 (2019)

    CAS  Google Scholar 

  19. H.P. Gao, J.J. Tian, F.R. Tan, H.W. Zheng, W.F. Zhang, Appl. Phys. A 124, 835 (2018)

    Google Scholar 

  20. N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, J. Appl. Phys. 110, 1554 (2011)

    Google Scholar 

  21. S.Y. Qiu, W. Li, Y. Liu, G.H. Liu, Y.Q. Wu, N. Chen, Trans. Nonferrous Met. Soc. China 20, 1911–1915 (2010)

    CAS  Google Scholar 

  22. N.V. Dang, N.T. Dung, P.T. Phong, I.-J. Lee, Phys. B 457, 103–107 (2015)

    CAS  Google Scholar 

  23. R. Waesche, W. Denner, H. Schulz, Mater. Res. Bull. 16, 497 (1981)

    CAS  Google Scholar 

  24. M.C. Maldonado-Orozco, M.T. Ochoa-Lara, J.E. Sosa-Márquez, R.P. Talamantes-Soto, A. Hurtado-Macías, R.L. Antón, J.A. González, J.T. Holguín-Momaca, S.F. Olive-Méndez, F. Espinosa-Magaña, J. Am. Ceram. Soc. 102, 2800–2809 (2019)

    CAS  Google Scholar 

  25. R.D. Burbank, H.T. Evans, Acta Crystallogr. 1, 330 (1948)

    CAS  Google Scholar 

  26. R. Böttcher, H.T. Langhammer, T. Müller, H.-P. Abicht, J. Phys.: Condens. Matter 20, 505209 (2008)

    Google Scholar 

  27. Y.B. Jiang, W.B. Mi, E.Y. Jiang, H.L. Bai, J. Vac. Sci. Technol. A 27, 1172 (2009)

    CAS  Google Scholar 

  28. N. Gouitaa, T. Lamcharfi, M. Bouayad, F. Abdi, N. Hadi, J. Mater. Sci.: Mater. Electron. 29, 6797–6804 (2018)

    CAS  Google Scholar 

  29. M. Valant, I. Arčon, I. Mikulska, D. Lisjak, Chem. Mater. 25, 3544–3550 (2013)

    CAS  Google Scholar 

  30. S. Li, H.Z. Zeng, S.Y. Zhang, X.H. Wei, Appl. Phys. Lett. 102, 153506 (2013)

    Google Scholar 

  31. F.T. Lin, D.M. Jiang, X.M. Ma, W.Z. Shi, Physica B 403, 2525–2529 (2008)

    CAS  Google Scholar 

  32. S. Ray, P. Mahadevan, S. Mandal, S.R. Krishnakumar, C.S. Kuroda, T. Sasaki, T. Taniyama, M. Itoh, Phys. Rev. B 77, 104416 (2008)

    Google Scholar 

  33. R. Maier, J.L. Cohn, J. Appl. Phys. 92, 5429 (2002)

    CAS  Google Scholar 

  34. T. Matsui, H. Tanaka, N. Fujimura, T. Ito, H. Mabuchi, K. Morii, Appl. Phys. Lett. 81, 2764–2766 (2002)

    CAS  Google Scholar 

  35. T. Matsui, E. Taketani, N. Fujimura, T. Ito, K. Morii, J. Appl. Phys. 93, 6993–6995 (2003)

    CAS  Google Scholar 

  36. X.K. Wei, L.D. Yao, X. Shen, Y. Yang, S.J. You, F.Y. Li, C.Q. Jin, R.C. Yu, Physica B 405, 4851–4854 (2010)

    CAS  Google Scholar 

  37. T. Fujii, F.M.F. de Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma, K. Okada, Phys. Rev. B 59, 3195–3202 (1999)

    CAS  Google Scholar 

  38. K.A. Bogle, M.N. Bachhav, M.S. Deo, N. Valanoor, S.B. Ogale, Appl. Phys. Lett. 95, 203502 (2009)

    Google Scholar 

  39. Y.B. Lin, Y.M. Yang, B. Zhuang, S.L. Huang, L.P. Wu, Z.G. Huang, F.M. Zhang, Y.W. Du, J. Phys. D. Appl. Phys. 41, 195007 (2008)

    Google Scholar 

  40. A. Rania, J. Kolteb, P. Gopalan, Ceram. Int. 44, 16703–16711 (2018)

    Google Scholar 

  41. Z.L. Miao, L. Chen, F. Zhou, Q. Wang, J. Phys. D. Appl. Phys. 51, 025107 (2018)

    Google Scholar 

  42. P. Senthilkumar, S. Dhanuskodi, M. Muneeswaran, N.V. Giridharan, S. Kuila, P.N. Vishwakarma, J. Appl. Phys. 123, 244101 (2018)

    Google Scholar 

  43. J. Su, X.X. Zou, Y.C. Zou, G.D. Li, P.P. Wang, J.S. Chen, Inorg. Chem. 52, 5924–5930 (2013)

    CAS  Google Scholar 

  44. J. Liu, J.R. Xu, B. Cui, Q. Yu, S.J. Zhong, L. Zhang, S.M. Du, D. Xu, J. Mater. Sci.: Mater. Electron. 31, 5205–5213 (2020)

    CAS  Google Scholar 

  45. Y. Yang, X.H. Wang, C.K. Sun, L.T. Li, Nanotechnology 20, 055709 (2009)

    Google Scholar 

  46. J. Yang, J. He, J.Y. Zhu, W. Bai, L. Sun, X.J. Meng, X.D. Tang, C.-G. Duan, D. Remiens, J.H. Qiu, J.H. Chu, Appl. Phys. Lett. 101, 222904 (2012)

    Google Scholar 

  47. V.A. Lukacs, R. Stanculescu, L. Curecheriu, C.E. Ciomaga, N. Horchidan, C. Cioclea, L. Mitoseriu, Ceram. Int. 46, 523–530 (2020)

    CAS  Google Scholar 

  48. Y.H. Yuan, X.N. Ying, Solid State Sci. 14, 84–88 (2012)

    CAS  Google Scholar 

  49. N. Maso, H. Beltran, E. Cordoncillo, P. Escribano, A.R. West, J. Mater. Chem. 16, 1626–1633 (2006)

    CAS  Google Scholar 

  50. X.N. Ying, Solid State Commun. 169, 20–23 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (61574058, and 61674058), the National Key Research and Development Program of China (2017YFA0303403), and ECNU Public Platform for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Zhang or Xiaodong Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhang, Y., Li, S. et al. Fe doping effect on the structural, ferroelectric and magnetic properties of polycrystalline BaTi1−xFexO3 ceramics. J Mater Sci: Mater Electron 31, 14487–14493 (2020). https://doi.org/10.1007/s10854-020-04008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04008-z

Navigation