Skip to main content
Log in

Structural, electrical, magnetic and optical properties of BaTi1−x(Ni1/2Nb1/2)xO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we have investigated the structural, electrical, magnetic and optical properties of Ni–Nb co-doped BaTiO3 ceramics. The compositions of BaTi1−x(Ni1/2Nb1/2)xO3 (0 ≤ x ≤ 0.1) were prepared through conventional solid-state reaction method. All the samples exhibit a gradual phase transition behavior from the tetragonal to a cubic structure with the increase in the Ni–Nb co-doping concentration. SEM and EDAX characterizations show that the ceramic samples have good crystallinity and uniform doping element Ni–Nb distribution. The temperature dependence of the dielectric constant reveals that Curie temperature gradually decreased with an increase in Ni2+ and Nb5+ concentrations. The ferroelectric studies show these doping samples exhibit a decreasing ferroelectric property with the increasing level of doping. The decrease in Curie temperature and the weakening of ferroelectricity can be attributed to the transformation of the crystal structure from the tetragonal phase to the cubic phase. Magnetic measurements show that the formation of the F-center makes the sample have ferromagnetic order at room temperature. By studying the effects of different Ni–Nb doping concentrations on the ferroelectricity and ferromagnetism of BaTiO3, it was found that among all samples, when the doping concentration x = 0.08, the ceramic samples showed the best multiferroicity. Moreover, the band gap of these samples is significantly reduced due to the introduction of impurity levels. These results indicate the potential application of Ni–Nb co-doped BaTiO3 in multiferroic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Dong, J.M. Liu, S.W. Cheong, Z. Ren, Adv. Phys. 64, 519–626 (2015)

    Article  CAS  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–762 (2006)

    Article  CAS  Google Scholar 

  3. T.G.T. Kimura, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55–58 (2003)

    Article  CAS  Google Scholar 

  4. M. Corasaniti, P. Barone, A. Nucara, M. Ortolani, L. Baldassarre, R. Fittipaldi, V. Granata, L. Rocco, A. Vecchione, W.S. Mohamed, J. Lorenzana, P. Calvani, Phys. Rev. B 96, 085115 (2017)

    Article  Google Scholar 

  5. N.A. Benedek, C.J. Fennie, J. Phys. Chem. C 117, 13339–13349 (2013)

    Article  CAS  Google Scholar 

  6. N.A. Hill, J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  CAS  Google Scholar 

  7. D.I. Khomskii, J. Magn. Magn. Mater. 306, 1–8 (2006)

    Article  CAS  Google Scholar 

  8. V. Khopkar, B. Sahoo, Phys. Chem. Chem. Phys. 22, 2986 (2020)

    Article  CAS  Google Scholar 

  9. H.S. Mohanty, A. Kumar, B. Sahoo, P.K. Kurliya, D.K. Pradhan, J. Mater. Sci.-Mater. Electron. 29, 6966 (2018)

    Article  CAS  Google Scholar 

  10. C.-X. Li, B. Yang, S.-T. Zhang et al., J. Mater. Sci.-Mater. Electron. 31, 9352 (2020)

    Article  CAS  Google Scholar 

  11. J.F. Scott, Applications of Modern Ferroelectrics, Science 315, 954–959 (2007)

    CAS  Google Scholar 

  12. A. Rani, J. Kolte, P. Gopalan, Ceram. Int. 41, 14057–14063 (2015)

    Article  CAS  Google Scholar 

  13. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, P. Alagarsamy, Mater. Res. Express 5, 016101 (2018)

    Article  Google Scholar 

  14. N. Hiroyuki, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 40, L1355–L1358 (2001)

    Article  Google Scholar 

  15. J.S. Lee, Z.G. Khim, Y.D. Park, D.P. Norton, J.D. Budai, L.A. Boatner, S.J. Pearton, R.G. Wilson, Solid-State Lett. 6, J1–J3 (2003)

    Article  CAS  Google Scholar 

  16. L. Zhou, Y. Zhang, S. Li, Q. Lian, J. Yang, W. Bai, X. Tang, J. Mater. Sci.-Mater. Electron. 31, 14487–14493 (2020)

    Article  CAS  Google Scholar 

  17. M. Zhou, J. Zhang, L. Ji, Y. Wang, J. Wang, F. Yu, Ceram. Int. 40, 853–857 (2014)

    Article  CAS  Google Scholar 

  18. Y.H. Lin, J. Yuan, S. Zhang, Y. Zhang, J. Liu, Y. Wang, C.-W. Nan, Appl. Phys. Lett. 95, 033105 (2009)

    Article  Google Scholar 

  19. S.F. Wang, Y.C. Wu, Y.C. Hsu, J.P. Chu, C.H. Wu, Jpn. J. Appl. Phys. 46, 2978–2983 (2007)

    Article  CAS  Google Scholar 

  20. S. Das, S. Ghara, P. Mahadevan, A. Sundaresan, J. Gopalakrishnan, D.D. Sarma, ACS Energy Lett. 3, 1176–1182 (2018)

    Article  CAS  Google Scholar 

  21. N.V. Dang, N.T. Dung, P.T. Phong, I.-J. Lee, Physica B 457, 103–107 (2015)

    Article  CAS  Google Scholar 

  22. R. Wäsche, W. Denner, H. Schulz, Mater. Res. Bull. 16, 497–500 (1981)

    Article  Google Scholar 

  23. S.K. Das, R.N. Mishra, B.K. Roul, Solid State Commun. 191, 19–24 (2014)

    Article  CAS  Google Scholar 

  24. B. Zhong, Z. Long, C. Yang, Y. Li, X. Wei, Ceram. Int. 46, 20565–20569 (2020)

    Article  CAS  Google Scholar 

  25. Y. Shuai, S. Zhou, D. Bürger, H. Reuther, I. Skorupa, V. John, M. Helm, H. Schmidt, J. Appl. Phys. 109, 084105 (2011)

    Article  Google Scholar 

  26. N. Masó, H. Beltrán, E. Cordoncillo, A.A. Flores, P. Escribano, D.C. Sinclair, A.R. West, J. Mater. Chem. 16, 3114–3119 (2006)

    Article  Google Scholar 

  27. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332–1334 (2004)

    Article  CAS  Google Scholar 

  28. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)

    Article  CAS  Google Scholar 

  29. M. Arshad, W. Khan, M. Abushad, M. Nadeem, S. Husain, A. Ansari, V.K. Chakradhary, Ceram. Int. 46, 27336–27351 (2020)

    Article  CAS  Google Scholar 

  30. P. Sharma, P. Kumar, R.S. Kundu, N. Ahlawat, R. Punia, Ceram. Int. 42, 12167–12171 (2016)

    Article  CAS  Google Scholar 

  31. J. Tian, H. Gao, H. Kong, P. Yang, W. Zhang, J. Chu, Nanoscale Res. Lett. 8, 533 (2013)

    Article  Google Scholar 

  32. K.A. Bogle, M.N. Bachhav, M.S. Deo, N. Valanoor, S.B. Ogale, Appl. Phys. Lett. 95, 203502 (2009)

    Article  Google Scholar 

  33. M.S. Mostari, M.J. Haque, S. Rahman Ankur, M.A. Matin, A. Habib, Mater. Res. Express 7, 066302 (2020)

    Article  Google Scholar 

  34. B. Weng, Z. Xiao, W. Meng, C.R. Grice, T. Poudel, X. Deng, Y. Yan, Adv. Energy Mater. 7, 1602260 (2017)

    Article  Google Scholar 

  35. D. Zheng, H. Deng, S. Si, Y. Pan, Q. Zhang, Y. Guo, P. Yang, J. Chu, Ceram. Int. 46, 6073–6078 (2020)

    Article  CAS  Google Scholar 

  36. F. Yang, L. Yang, C. Ai, P. Xie, S. Lin, C.Z. Wang, X. Lu, Nanomaterials 8, 455 (2018)

    Article  Google Scholar 

  37. J. Yin, Z. Zou, J. Ye, J. Phys. Chem. B 107, 4936–4941 (2003)

    Article  CAS  Google Scholar 

  38. A. Kumar, R. Kumar, N. Verma et al., Opt. Mater. 108, 110163 (2020)

    Article  CAS  Google Scholar 

  39. L.N. Mahour, H.K. Choudhary, R. Kumar, A.V. Anupama, B. Sahoo, Ceram. Int. 45, 24625 (2019)

    Article  CAS  Google Scholar 

  40. M. Borah, D. Mohanta, J. Appl. Phys. 112, 124321 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2017YFA0303403), the National Natural Science Foundation of China (61674058, 61574058) and the Foundation of National Key Laboratory of Shock Wave and Detonation Physics under Grant (6142A03182007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Zhang or Xiaodong Tang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, Y., Zhou, L. et al. Structural, electrical, magnetic and optical properties of BaTi1−x(Ni1/2Nb1/2)xO3 ceramics. J Mater Sci: Mater Electron 32, 19519–19528 (2021). https://doi.org/10.1007/s10854-021-06470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06470-9

Navigation