Skip to main content
Log in

Structural characterization, dielectric, and magnetic properties of Ti-doped YFeO3 multiferroic compound

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Crystal structure, and magnetic and dielectric properties were studied in Ti-doped YFeO3 polycrystalline samples. The crystal structure and chemical state of the Fe/Ti cations were characterized by a combination of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that a narrow solid-solubility limit is achieved (~ 6%) and the d0–ness of Ti4+ is not favored in the YFeO3 matrix. A change in the valence states of Fe and Ti cations explains not only the low solubility limit but also the anomalous increase of the volume cell. Soft magnetic hysteresis curves in the M vs H curves indicate that the weak ferromagnetic contribution prevails for all the studied samples. Furthermore, by means of differential calorimetry (DSC) it was possible to identify the AFM transition which decreases with increasing Ti content. On the other hand, the change of the step-like anomaly to a broad peak in the permittivity (ε′) and loss tangent (tan δ) as Ti content increases resemble to a relaxor ferroelectric transition. The endothermic peak (DSC) around the magnetic transition and the broad peaks in the ε′(T) data seem to indicate the existence of a local polarization coupled with AFM transition at ~ 650 K. Two types of charge carriers were found in the doped systems, oxygen vacancies at high temperatures, and small polarons at low temperatures, respectively. Besides, it is found that the introduction of those charge carriers in the YFeO3 matrix occurs by the change of oxidation state from Fe3+ to Fe2+ through Ti3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.L. White, J. Appl. Phys. 40, 1061–16069 (1969)

    CAS  Google Scholar 

  2. R.M. White, R.J. Nemanich, C. Herring, Phys. Rev B 25, 1822 (1982)

    CAS  Google Scholar 

  3. M. Eibschütz, S. Shtikman, D. Treves, Phys. Rev. 156, 562–577 (1967)

    Google Scholar 

  4. N.A. Spaldin, S.W. Cheong, R. Ramesh, Phys Tod. 63, 38–43 (2010)

    Google Scholar 

  5. Y. Arimoto, H. Ishiwara, MRS Bull. 29, 823–828 (2004)

    CAS  Google Scholar 

  6. G. Catalan, J.F. Scott, Adv. Mater. 24, 2463–2485 (2009)

    Google Scholar 

  7. M. Čebela, D. Zagorac, K. Batalović et al., Ceram. Int. 43, 1256–1264 (2017)

    Google Scholar 

  8. C. Zhang, J. Su, X. Wang et al., J. Alloys Compd. 509, 7738–7741 (2011)

    CAS  Google Scholar 

  9. H. Shen, J. Xu, A. Wu et al., Mater. Sci. Eng. B. 157, 77–80 (2009)

    CAS  Google Scholar 

  10. M. Shang, C. Zhang, T. Zhang et al., Appl. Phys. Lett. 102, 062903 (2013)

    Google Scholar 

  11. J. Mao, Y. Sui, X. Zhang et al., Appl. Phys. Lett. 98, 192510 (2011)

    Google Scholar 

  12. M.A. Ahmed, M.S. Selim, M.M. Arman, Mater. Chem. Phys. 129, 705–712 (2011)

    CAS  Google Scholar 

  13. A.M. Bolarín-Miró, F. Sánchez-De Jesús, C.A. Cortés-Escobedo et al., J. Alloys Compd. 586, 90–94 (2014)

    Google Scholar 

  14. X. Yuan, Y. Sun, M. Xu, J. Solid State Chem. 196, 362–366 (2012)

    CAS  Google Scholar 

  15. D. Van Tac, V.O. Mittova, I.Y. Mittova, Inorg. Mater. 47, 521–526 (2011)

    CAS  Google Scholar 

  16. J.H. Lee, Y.K. Jeong, J.H. Park et al., Phys. Rev. Lett. 107, 117201 (2011)

    Google Scholar 

  17. Z.X. Cheng, H. Shen, J.Y. Xu et al., J. Appl. Phys. 111, 034103 (2012)

    Google Scholar 

  18. B. Rajeswaran, P. Mandal, R. Saha, E. Suard et al., Chem. Mater. 24, 3591–3595 (2012)

    CAS  Google Scholar 

  19. S. Kovachev, D. Kovacheva, S. Aleksovska et al., AIP Conf. Proc. 1203, 199–204 (2010)

    Google Scholar 

  20. Y. Tokunaga, N. Furukawa, H. Sakai et al., Nat. Mater. 8, 558–562 (2009)

    CAS  Google Scholar 

  21. Y. Tokunaga, S. Iguchi, T. Arima et al., Phys. Rev. Lett. 101, 3–6 (2008)

    Google Scholar 

  22. J. Rodríguez-Carvajal, Phys. B 192, 55–69 (1993)

    Google Scholar 

  23. R. Maiti, S. Basu, D. Chakravorty, J. Magn. Magn. Mater. 321, 3274–3277 (2009)

    CAS  Google Scholar 

  24. D. Du Boulay, E.N. Maslen, V.A. Streltsov et al., Acta Crystallogr. Sect. B 51, 921–929 (1995)

    Google Scholar 

  25. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Google Scholar 

  26. A.V. Naumkin, A. Kraut-Vass, NIST X-ray Photoelectron spectroscopy database Ver-sion (National Institute of Standards and Technology, Gaithersburg, 2012)

    Google Scholar 

  27. V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, Z. Zhang, J. Electron. Spectrosc. Relat. Phenomena 152, 18–24 (2006)

    CAS  Google Scholar 

  28. C. Badini, S.M. Deambrosis, E. Padovano et al., Materials 9, 961 (2016)

    Google Scholar 

  29. S. Raut, P.D. Babu, R.K. Sharma et al., J. Appl. Phys. 123, 174101 (2018)

    Google Scholar 

  30. D. Treves, M. Eibschütz, P. Coppens, Phys. Lett. 18(3), 209 (1965)

    Google Scholar 

  31. E.F. Bertaut, Acta Crystallogr. A 24, 217–231 (1968)

    CAS  Google Scholar 

  32. T. Yamaguchi, Phys. Chem. Solids. 35, 479–500 (1974)

    CAS  Google Scholar 

  33. S. Raut, B. Kar, S. Velaga et al., J. Appl. Phys. 126, 074103 (2019)

    Google Scholar 

  34. B. Deka, S. Ravi, A. Perumal et al., Ceram. Int. 43, 1323–1334 (2017)

    CAS  Google Scholar 

  35. Y. Ma, X.M. Chen, Y.Q. Lin, J. Appl. Phys. 103, 124111 (2008)

    Google Scholar 

  36. S. Mathur, M. Veith, R. Rapalaviciute et al., Chem. Mater. 16, 1906 (2004)

    CAS  Google Scholar 

  37. W. Zhang, C. Fang, W. Yin et al., Mater. Chem. Phys. 137, 877–883 (2013)

    CAS  Google Scholar 

  38. A. Durán, L. Moxca, H.A. Borbón-Núñez, SN Appl. Sci. 1, 1331 (2019)

    Google Scholar 

  39. S. Madolappa, B. Ponraj, R. Bhimireddi et al., J. Am. Ceram. Soc. 100, 2641–2650 (2017)

    CAS  Google Scholar 

  40. O. Raymond, R. Font, N. Suárez-Almodovar et al., J. Appl. Phys. 97, 084107 (2005)

    Google Scholar 

  41. C. Ang, Z. Yu, L. Cross, Phys. Rev. B 62, 228–236 (2000)

    Google Scholar 

  42. M.A. Tena, G. García-Belmonte, J. Bisquert, J. Mater. Sci. 31, 2043–2046 (1996)

    CAS  Google Scholar 

  43. A. Durán, E. Verdin, R. Escamilla et al., Mater. Chem. Phys. 133, 1011 (2012)

    Google Scholar 

  44. G.V. Subba Rao, B.M. Wanklyn, C.N.R. Rao, J. Phys. Chem. Solids 32, 345 (1971)

    Google Scholar 

Download references

Acknowledgement

M. Solórzano thanks CONACyT for the scholarship awarded. R. Falconi acknowledges CONACyT project CB-20150 No. 253888. A. Durán thanks PAPIIT-UNAM project IN101919. The technical assistance of P. Casillas and M. A. Álvarez is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solórzano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solórzano, M., Durán, A., López, R. et al. Structural characterization, dielectric, and magnetic properties of Ti-doped YFeO3 multiferroic compound. J Mater Sci: Mater Electron 31, 14478–14486 (2020). https://doi.org/10.1007/s10854-020-04007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04007-0

Navigation