Skip to main content
Log in

Synthesis and characterization of GO-H3BO3 composite for improving single-sensor impedimetric olfaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study shows the synthesis and characterization of graphene oxide (GO) and its composite with boric acid (GO-HBO). Their films were applied to a multi-frequency impedimetric single-sensor olfaction, operating in a high humid environment for human breath diagnoses. The characterization of the composite GO-HBO and bare GO was carried using scanning electronic microscopy (SEM), impedance spectroscopy (IS), structural analysis: XRD, Raman, and elementary analysis: X-ray photoelectron spectroscopy (XPS) and thermogravimetry (TG). The determination of the electronic signatures of the water and aqueous solutions of ethanol or acetone, in the range of 80–640 ppm, was carried out. For that, a single sensor was interrogated sequentially with five different frequencies of the signal probe, inside a headspace system. The matrix of values, of the impedance, capacitance, and phase angle, was analyzed using multivariate PCA statistics. The differential performance of both materials was discussed based on structural and electric properties. Despite the proof-of-concept nature of this study, the whole of its results contributes to the further developments of materials for single-sensor olfaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.W. Moncrieff, An instrument for measuring and classifying odors. J. Appl. Physiol. 16(4), 742–749 (1961)

    CAS  Google Scholar 

  2. J.W. Gardner, P.N. Bartlett, A brief history of electronic noses. Sens. Actuators B 18(1–3), 210–211 (1994)

    Google Scholar 

  3. J. Goschnick, M. Harms, in Detection of Explosives and Landmines, ed. by H. Schubert, A. Kuznetsov (Springer, Dordrecht, 2002), p. 83

  4. S. Dragonieri et al., An electronic nose distinguishes exhaled breath of patients with malignant pleural mesothelioma from controls. Lung Cancer 75(3), 326–331 (2012)

    Google Scholar 

  5. M.R. Cavallari et al., A hybrid electronic nose and tongue for the detection of ketones: improved sensor orthogonality using graphene oxide-based detectors. IEEE Sens. J. 17(7), 1971–1980 (2017)

    CAS  Google Scholar 

  6. G. Gaál et al., 3D printed e-tongue. Front. Chem. 6, 151 (2018)

    Google Scholar 

  7. K. Sothivelr et al., Obtaining chemical selectivity from a single, nonselective sensing film: two-stage adaptive estimation scheme with multiparameter measurement to quantify mixture components and interferents. ACS Sens. 3(9), 1656–1665 (2018)

    CAS  Google Scholar 

  8. R.S. Andre et al., Enhanced and selective ammonia detection using In2O3/reduced graphene oxide hybrid nanofibers. Appl. Surf. Sci. 473, 133–140 (2019)

    CAS  Google Scholar 

  9. R. Bhujel, S. Rai, B.P. Swain, Investigation of cyclic voltammetry, impedance spectroscopy and electrical properties of thermally exfoliated biomass-synthesized graphene. Appl. Nanosci. 9, 1–13 (2019)

    Google Scholar 

  10. P. Ramesh, B. Jebasingh, A facile synthesis of bis-(pththalimidoethyl)-amine functionalized graphene oxide and its dual performance as a supercapacitor electrode and fluorescence sensor. Mater. Chem. Phys. 222, 45–54 (2019)

    CAS  Google Scholar 

  11. https://www.sensigent.com/products/cyranose.html, Accessed 7 March 2019

  12. Medical Applications of Nanocomposite Sensor Arrays, https://www.sensigent.com/products/Medical%2520Applications.pdf. Accessed 7 March 2019

  13. F. Villa et al., Wearable multi-frequency and multi-segment bioelectrical impedance spectroscopy for unobtrusively tracking body fluid shifts during physical activity in real-field applications: a preliminary study. Sensors 16(5), 673 (2016)

    Google Scholar 

  14. R. Basak, K. Wahid, A. Dinh, Determination of leaf nitrogen concentrations using electrical impedance spectroscopy in multiple crops. Remote Sens. 12(3), 566 (2020)

    Google Scholar 

  15. J.K. Brunner, P.O. Gaggero, N. Robitaille, Sensor device for electrical impedance tomography imaging, electrical impedance tomography imaging instrument and electrical impedance tomography method. U.S. Patent n. 10,548,484, 4 fev. 2020.

  16. S. Vasantham et al., Paper based point of care immunosensor for the impedimetric detection of cardiac troponin I biomarker. Biomed. Microdevices 22(1), 6 (2020)

    CAS  Google Scholar 

  17. M.H. Amrani, P.A. Payne, K.C. Persaud, Multi-frequency measurements of organic conducting polymers for sensing of gases and vapours. Sens. Actuators B 33(1–3), 137–141 (1996)

    CAS  Google Scholar 

  18. C.M. Bhatt, N. Jampana, Multi frequency interrogation of polypyrrole based gas sensors for organic vapors. Microsyst. Technol. 17(3), 417–423 (2011)

    CAS  Google Scholar 

  19. F.S. Fedorov et al., Potassium polytitanate gas-sensor study by impedance spectroscopy. Anal. Chim. Acta 897, 81–86 (2015)

    CAS  Google Scholar 

  20. S. Borini et al., Ultrafast graphene oxide humidity sensors. ACS Nano 7(12), 11166–11173 (2013)

    CAS  Google Scholar 

  21. J.N. Appaturi et al., Supported cobalt nanoparticles on graphene oxide/mesoporous silica for oxidation of phenol and electrochemical detection of H2O2 and Salmonella spp. Mater. Chem. Phys. 232, 493–505 (2019)

    CAS  Google Scholar 

  22. F. Ejehi et al., Graphene oxide papers in nanogenerators for self-powered humidity sensing by finger tapping. Sci. Rep. 10(1), 1–11 (2020)

    Google Scholar 

  23. H. Bi et al., Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3(1), 1–7 (2013)

    Google Scholar 

  24. N. Li et al., Ultrahigh humidity sensitivity of graphene oxide combined with Ag nanoparticles. Rsc Adv. 7(73), 45988–45996 (2017)

    Google Scholar 

  25. F. Mouhat, F.X. Coudert, M.L. Bocquet, Structure and chemistry of graphene oxide in liquid water from first principles. Nat. Commun. 11(1), 1–9 (2020)

    Google Scholar 

  26. S. Karthick et al., Standardization, calibration, and evaluation of tantalum-nano rGO-SnO2 composite as a possible candidate material in humidity sensors. Sensors 16(12), 2079 (2016)

    Google Scholar 

  27. E. Comini, et al. GO/2D WS2 based humidity sensor. In: Multidisciplinary digital publishing institute proceedings. 2017. p. 469 (2017). https://doi.org/10.3390/proceedings1040469

  28. G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)

    CAS  Google Scholar 

  29. M.F.P. Da Silva et al., A simple visible light photo-assisted method for assembling and curing multilayer GO thin films. Mater. Chem. Phys. 165, 125–133 (2015)

    Google Scholar 

  30. J. Zhang, X. Zheng, Y. Ni, Selective enrichment and MALDI-TOF MS analysis of small molecule compounds with vicinal diols by boric acid-functionalized graphene oxide. J. Am. Soc. Mass Spectrom. 26(8), 1291–1298 (2015)

    CAS  Google Scholar 

  31. L. Xuyang, P. Bandyopadhyay, M. Guo, N.H. Kim, J.H. Lee, Enhanced gas barrier and anticorrosion performance of boric acid induced cross-linked poly (vinyl alcohol-co-ethylene)/graphene oxide film. Carbon 133, 150–161 (2018)

    Google Scholar 

  32. R. Li et al., Boron/nitrogen co-doped carbon synthesized from waterborne polyurethane and graphene oxide composite for supercapacitors. RSC Adv. 9(3), 1679–1689 (2019)

    CAS  Google Scholar 

  33. P. Bodian et al., Multifunctional flexible and stretchable polyurethane/carbon nanotube strain sensor for human breath monitoring. Polym. Adv. Technol. (2019). https://doi.org/10.1002/pat.4621

    Article  Google Scholar 

  34. K.D. Singh et al., Standardization procedures for real-time breath analysis by secondary electrospray ionization high-resolution mass spectrometry. Anal. Bioanal. Chem. 411, 1–16 (2019)

    Google Scholar 

  35. T. Bruderer et al., On-line analysis of exhaled breath: focus review. Chem. Rev. 119, 19 (2019)

    Google Scholar 

  36. P. Srinivasan et al., Development of an acetone sensor using nanostructured CO3O4 thin films for exhaled breath analysis. RSC Adv. 9(52), 30226–30239 (2019)

    CAS  Google Scholar 

  37. M. Tannarana et al., Humidity sensor based on Sb0.1Sn0.9Se2 ternary alloy for human breath monitoring and touchless positioning interface. Eur. Phys. J. Plus 134(5), 211 (2019)

    Google Scholar 

  38. L. Staudenmaier, Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898)

    CAS  Google Scholar 

  39. S. Doniach, M. Sunjic, Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C 3(2), 285 (1970)

    CAS  Google Scholar 

  40. D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5(12), 4709 (1972)

    Google Scholar 

  41. J.E.B. Andles, Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1, 11–19 (1947)

    Google Scholar 

  42. P. Choi, N.H. Jalani, R. Datta, Thermodynamics and proton transport in nafion: II. Proton diffusion mechanisms and conductivity. J. Electrochem. Soc. 152(3), E123 (2005)

    CAS  Google Scholar 

  43. R.N. Vyas, K. Li, B. Wang, Modifying randles circuit for analysis of polyoxometalate layer-by-layer films. J. Phys. Chem. B 114(48), 15818–15824 (2010)

    CAS  Google Scholar 

  44. MICROSOFT EXEL XLSTAT Microsoft Corporation, 2017.

  45. M.F.P. da Silva et al., Synthesis and characterization of CeO2–graphene composite. J. Therm. Anal. Calorim. 107(1), 257–263 (2012)

    Google Scholar 

  46. P. Cui et al., One-pot reduction of graphene oxide at subzero temperatures. Chem. Commun. 47(45), 12370–12372 (2011)

    CAS  Google Scholar 

  47. F.T. Johra, J.-W. Lee, W.-G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20(5), 2883–2887 (2014)

    CAS  Google Scholar 

  48. M. Gönen, in Physical Chemistry for Engineering and Applied Sciences, ed. by A.K. Haghi, C.N.A. Gonzalez, S.Thomas, K.M. Praveen (Apple Academic Press, New York, 2018), p. 47

  49. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison Wesley, Reading, MA, USA), pp. 81–106 (1978)

  50. A.W. Burton, O. Kenneth, R. Thomas, I.Y. Chan, Microporous Mesoporous Mater. 117, 75–90 (2009)

    CAS  Google Scholar 

  51. V. Uvarov, I. Popov, Mater. Charac. 85, 111 (2013)

    CAS  Google Scholar 

  52. L.G. Cançado et al., General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88(16), 163106 (2006)

    Google Scholar 

  53. S. Islam, S.S.Z. Ashraf, Point and space groups of graphene. Resonance 24(4), 445–457 (2019)

    Google Scholar 

  54. A.C. Ferrari et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    CAS  Google Scholar 

  55. D. Graf et al., Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 7(2), 238–242 (2007)

    CAS  Google Scholar 

  56. L.G. Cançado et al., Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3319 (2011)

    Google Scholar 

  57. D. Yang et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47(1), 145–152 (2009)

    CAS  Google Scholar 

  58. A. Kaniyoor, S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2(3), 032183 (2012)

    Google Scholar 

  59. W.-K. Oh et al., Fluorescent boronic acid-modified polymer nanoparticles for enantioselective monosaccharide detection. Anal. Methods 4(4), 913–918 (2012)

    CAS  Google Scholar 

  60. X. Li et al., Enhanced gas barrier and anticorrosion performance of boric acid induced cross-linked poly (vinyl alcohol-co-ethylene)/graphene oxide film. Carbon 133, 150–161 (2018)

    CAS  Google Scholar 

  61. D.M. Patil, G.A. Phalak, S.T. Mhakse, Boron-containing UV-curable oligomer-based linseed oil as flame-retardant coatings: synthesis and characterization. Iran. Polym. J. 27(10), 795–806 (2018)

    CAS  Google Scholar 

  62. Y. Yao et al., The effect of ambient humidity on the electrical properties of graphene oxide films. Nanoscale Res. Lett. 7(1), 1–7 (2012)

    Google Scholar 

  63. N. Agmon, The grotthuss mechanism. Chem. Phys. Lett. 244(5–6), 456–462 (1995)

    CAS  Google Scholar 

  64. S. Skale, V. Doleček, M. Slemnik, Substitution of the constant phase element by Warburg impedance for protective coatings. Corros. Sci. 49(3), 1045–1055 (2007)

    CAS  Google Scholar 

  65. W. Yu et al., Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A 375(10), 1323–1328 (2011)

    CAS  Google Scholar 

  66. N. Wei, X. Peng, Z. Xu, Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces. 6(8), 5877–5883 (2014)

    CAS  Google Scholar 

  67. P.B. de Macedo, H. Hojaji, I. S. Muller. Method for vitrifying ash. U.S. Patent n. 5,430,236, 4 Jul. 1995.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. P. da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.F.P., Souza, E.J.P., Junior, A.T.S. et al. Synthesis and characterization of GO-H3BO3 composite for improving single-sensor impedimetric olfaction. J Mater Sci: Mater Electron 31, 14443–14453 (2020). https://doi.org/10.1007/s10854-020-04004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04004-3

Navigation