Skip to main content
Log in

Piezoelectric and pyroelectric properties of Mn-doped 0.36Pb(In1/2Nb1/2)O3–0.36Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.5 mol% Mn-doped 0.36Pb(In1/2Nb1/2)O3–0.36Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 (Mn-PIMNT) ceramics were fabricated by a two-step precursor method. The phase structure, morphologies, and temperature-dependent dielectric, ferroelectric, piezoelectric, and pyroelectric properties were studied. The results indicated that the Mn-PIMNT ceramics had pure perovskite phase and uniform grain distribution. Meanwhile, it exhibited ultrahigh piezoelectric coefficient d33 of 235 pC/N, high-power figure of merit (FOM) of 60,160 pC/N, large remnant polarization Pr of 34.57 µC cm−2 and coercive field EC of 12.97 kV cm−1, which were much better than that of binary Mn-PMNT ceramics. Moreover, by Mn ions-doping, giant pyroelectric coefficient p up to 4.8 × 10–4 C m−2 K−1 was obtained and the figure of merits for the detectivity Fd reached 2.317 × 10–5 Pa−1/2, higher than PIMNT ceramics. Combined with the outstanding piezoelectric and pyroelectric properties as well as high ferroelectric rhombohedral to tetragonal phase transition temperature Trt (up to 146 ℃) and ferroelectric tetragonal to cubic phase transition TC of 188 ℃, it is suggested that the Mn-PIMNT ceramics are an excellent candidate for piezoelectric and pyroelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.J. Zhang, F. Li, X.N. Jiang, J.W. Kim, J. Luo, X.C. Geng, Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-A review. Prog. Mater. Sci. 68, 1–66 (2015)

    Article  CAS  Google Scholar 

  2. X.B. Li, H.S. Luo, The growth and properties of relaxor-based ferroelectric single crystals. J. Am. Ceram. Soc. 93(10), 2915–2928 (2010)

    Article  CAS  Google Scholar 

  3. B.Y. Ayse, M.A. Ebru, Enhanced soft character of crystallographically textured Mn-doped binary 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics. J. Electron. Mater. 47(11), 6557–6566 (2018)

    Article  Google Scholar 

  4. D. Zhou, J. Chen, L.H. Luo, X.Y. Zhao, H.S. Luo, Optimized orientation of 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal for applications in medical ultrasonic arrays. Appl. Phys. Lett. 93(7), 073502 (2008)

    Article  Google Scholar 

  5. X.Y. Gao, J.K. Yang, J.G. Wu et al., Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5(1), 1900716 (2020)

    Article  CAS  Google Scholar 

  6. K. Zhang, S.H. Choy, L.B. Zhao et al., Shear-mode PMN-PT piezoelectric single crystal resonator for microfluidic applications. Microelectron. Eng. 88(6), 1028–1032 (2011)

    Article  CAS  Google Scholar 

  7. D.W. Wang, M.S. Cao, S.J. Zhang, Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics. J. Eur. Ceram. Soc. 32(2), 433–439 (2012)

    Article  Google Scholar 

  8. M. Davis, D. Damjanovic, N. Setter, Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Phys. Rev. B. 73(1), 014115 (2006)

    Article  Google Scholar 

  9. S.J. Zhang, J. Luo, R. Xia et al., Field-induced piezoelectric response in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Solid. State. Commun. 137(1–2), 16–20 (2006)

    Article  CAS  Google Scholar 

  10. E.W. Sun, W.W. Cao, Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 65, 124–210 (2014)

    Article  CAS  Google Scholar 

  11. L.C. Lim, K.K. Rajan, High-homogeneity High-performance flux-grown Pb(Zn1/3Nb2/3)O3-(6–7)% PbTiO3 single crystals. J. Cryst. Growth. 271(3–4), 435–444 (2004)

    Article  CAS  Google Scholar 

  12. Q.X. Du, Y.X. Tang, X.L. Huang et al., Structures and pyroelectric properties for [111]-oriented Mn-doped rhombohedral 0.36PIN-0.36PMN–0.28PT crystal. J. Am. Ceram. Soc. 102, 7329–7335 (2019)

    Article  CAS  Google Scholar 

  13. X.D. Qi, E.W. Sun, J.J. Wang et al., Electromechanical properties of Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics. Ceram. Int. 42(14), 15332–15337 (2016)

    Article  CAS  Google Scholar 

  14. A. Hussain, N. Sinha, S. Bhandari, H. Yadav, B. Kumar, Synthesis of 0.64Pb(Mg1/3Nb2/3)O3-0.36PbTiO3 ceramic near morphotropic phase boundary for high performance piezoelectric, ferroelectric and pyroelectric applications. J. Asian. Ceram. Soc. 4(3), 337–343 (2016)

    Article  Google Scholar 

  15. Z. Ren, Z.-G. Ye, Effects of Mn-doping on PIN-PMN-PT ceramics with MPB composition. Ferroelectrics 464(1), 130–135 (2014)

    Article  CAS  Google Scholar 

  16. X.D. Qi, E.W. Sun, R. Zhang et al., Effect of Mn-doping on dielectric relaxation behavior of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric ceramics. Ceram. Int. 43(18), 16819–16826 (2017)

    Article  CAS  Google Scholar 

  17. J. Wu, Y.F. Chang, B. Yang et al., Phase transitional behavior and electrical properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics. J. Mater. Sci. Mater. Electron. 26(3), 1874–1880 (2015)

    Article  CAS  Google Scholar 

  18. H.T. Oh, H.J. Joo, M.C. Kim, H.Y. Lee, Effect of Mn on dielectric and piezoelectric properties of 71PMN-29PT [71Pb(Mg1/3Nb2/3)O3–29PbTiO3] single crystals and polycrystalline ceramics. J. Korean Ceram. Soc. 55(2), 166–173 (2018)

    Article  CAS  Google Scholar 

  19. J. Kim, T. Moro, S. Yamanaka, I. Murayama, Temperature stability of PIN-PMN-PT ternary ceramics during pyroelectric power generation. J. Alloys. Compd. 768, 22–27 (2018)

    Article  CAS  Google Scholar 

  20. B. Ünlü, M. Özacar, Effect of Cu and Mn amounts doped to TiO2 on the performance of DSSCs. Sol. Energy. 196, 448–456 (2020)

    Article  Google Scholar 

  21. S. Güner, M. Amir, M. Geleri, M. Sertkol, A. Baykal, Magneto-optical properties of Mn3+ substituted Fe3O4 nanoparticles. Ceram. Int. 41(9), 10915–10922 (2015)

    Article  Google Scholar 

  22. Y.F. Chang, J. Wu, Y. Sun et al., Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics. Appl. Phys. Lett. 107(8), 082902 (2015)

    Article  Google Scholar 

  23. R.X. Wang, J. Zhang, K. Li et al., Domain structure and evolution in ZnO-modified Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 ceramics. J. Am. Ceram. Soc. 102(8), 4874–4881 (2019)

    Article  CAS  Google Scholar 

  24. S.X. Xie, Z. Tan, L.M. Jiang et al., Ferroelastic properties and compressive stress-strain response of bismuth titanate based ferroelectrics. Ceram. Int. 46(1), 1183–1188 (2020)

    Article  CAS  Google Scholar 

  25. W.W. Ji, B.J. Fang, X.Y. Zhao et al., Enhancing electrical properties of high-Curie temperature piezoelectric ceramics BNT-PZT and their mechanism. Curr. Appl. Phys. 19(12), 1367–1373 (2019)

    Article  Google Scholar 

  26. A. Manohar, C. Krishnamoorthi, Structural, optical, dielectric and magnetic properties of CaFe2O4 nanocrystals prepared by solvothermal reflux method. J. Alloys Compds. 722, 818–827 (2017)

    Article  CAS  Google Scholar 

  27. Y. Li, Y.X. Tang, J.W. Chen et al., Enhanced pyroelectric properties and thermal stability of Mn-doped 0.29Pb(In1/2Nb1/2)O3-0.29Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 single crystals. Appl. Phys. Lett. 112(17), 172901 (2018)

    Article  Google Scholar 

  28. A. Manohar, V. Vijayakanth, R.Y. Hong, Solvothermal reflux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties. J. Mater. Sci. Mater. Electron. 31, 799–806 (2020)

    Article  CAS  Google Scholar 

  29. Q.X. Xie, Y.Q. Hu, S.D. Xue et al., Phase transition, domain structure and electrical properties of Mn-doped 0.3Pb(In1/2Nb1/2)O3-0.4Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 crystals. Mater. Chem. Phys. 238, 121890 (2019)

    Article  CAS  Google Scholar 

  30. D.B. Lin, S. Zhou, W.G. Liu, F. Li, Thermal stability and electric-field-induced strain behaviors for PIN-PSN-PT piezoelectric ceramics. J. Am. Ceram. Soc. 101(1), 316–325 (2018)

    Article  CAS  Google Scholar 

  31. H. Tang, S.J. Zhang, Y.J. Feng et al., Piezoelectric property and strain behavior of Pb(Yb0.5Nb0.5)O3-PbHfO3-PbTiO3 polycrystalline ceramics. J. Am. Ceram. Soc. 96(9), 2857–2863 (2013)

    Article  CAS  Google Scholar 

  32. H. Kungl, T. Fett, S. Wagner, M.J. Hoffmann, Nonlinearity of strain and strain hysteresis in morphotropic LaSr-doped lead zirconate titanate under unipolar cycling with high electric fields. J. Appl. Phys. 101(4), 044101 (2007)

    Article  Google Scholar 

  33. A. Meitzler, H.F. Tiersten, A.W. Warner, IEEE standard on piezoelectricity. (1988)

  34. R.W. Whatmore, Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335 (1986)

    Article  CAS  Google Scholar 

  35. P. Kumar, S. Sharma, O.P. Thakur, C. Parkash, T.C. Goel, Dielectric, piezoelectric and pyroelectric properties of PMN-PT (68:32) system. Ceram. Int. 30, 585–589 (2004)

    Article  CAS  Google Scholar 

  36. S.T. Lau, C.H. Cheng, S.H. Choy, D.M. Lin, Lead-free ceramics for pyroelectric applications. J. Appl. Phys. 103, 104105 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974250 and 51772192) and the Science and Technology Commission of Shanghai Municipality (Grant Nos. 17070502700 and 19070502800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxue Tang or Feifei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Tang, Y., Wang, F. et al. Piezoelectric and pyroelectric properties of Mn-doped 0.36Pb(In1/2Nb1/2)O3–0.36Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 ceramics. J Mater Sci: Mater Electron 31, 14426–14433 (2020). https://doi.org/10.1007/s10854-020-04002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04002-5

Navigation