Skip to main content

Advertisement

Log in

Regulating electronic properties of graphene sheet via n-type doping for solar cells applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Solar energy can be utilized by electronic device known as solar cells which are then used to power various equipment as well as batteries. The conventional semiconductor used in solar cell is silicon and it has a bandgap of 1.4 eV. However, for efficient photovoltaic phenomena along with superior performance of solar cell, we require a novel semiconductor with smaller bandgap ideally up to this range. Hence, in this present work, attempts have been made to regulate the electronic bandgap in graphene sheet to use it for solar cell application. The in-depth analysis of electronic properties considering the band structure, density of states and geometrical stability on the basis of cohesive energy has been examined. Two n-type dopants, Phosphorus and Nitrogen are substituted in graphene sheet and investigations are reckoned in the frame work of density functional theory. The controlled tuning of bandgap is performed by varying dopant concentration at 5.55%, 8.83% and 11.11%. Our findings show that doping induces bandgap in both cases and requirement of smaller bandgap is achieved. For phosphorus doping, bandgap of 0.3 eV for 11.11% and for nitrogen doping, bandgap of 1.5 eV is achieved. Furthermore, the electrical properties are evaluated by calculating conductance for individual dopant with varying percentage. Finally, our outcome shows that the phosphorus-doped graphene is more favourable in comparison to nitrogen doped as it provides bandgap while not reducing conductance to that extent. Thus, this analysis will enhance the scope of doped graphene in solar cells application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Nishi, J. Power Sources 100, 101 (2001)

    Article  CAS  Google Scholar 

  2. K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Solid state ionics 7, 314 (1981)

    Google Scholar 

  3. M.G.S.R. Thomas, P.G. Bruce, J.B. Goodenough, Solid State Ionics 17, 13 (1985)

    Article  CAS  Google Scholar 

  4. I. Meric, M.Y. Han et al., Nat. Nanotechnol. 3, 654 (2008)

    Article  CAS  Google Scholar 

  5. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010)

    Article  CAS  Google Scholar 

  6. K.S. Novoselov et al., Nature 490, 192 (2012)

    Article  CAS  Google Scholar 

  7. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  CAS  Google Scholar 

  8. K.I. Bolotin et al., Solid State Commun. 146, 351 (2008)

    Article  CAS  Google Scholar 

  9. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008)

    Article  CAS  Google Scholar 

  10. Z. Luo, Y. Lu, D.W. Singer et al., Chem. Mater. 23, 1441 (2011)

    Article  CAS  Google Scholar 

  11. Y. Lu, M.B. Lerner, Q.J. Qi et al., Appl. Phys. Lett. 100, 033110 (2012)

    Article  Google Scholar 

  12. B.R. Goldsmith, J.J. Mitala Jr., J. Josue, ACS Nano 5, 5408 (2011)

    Article  CAS  Google Scholar 

  13. P. Sharma, S. Singh, S.S. Gupta, I. Kaur, J. Mater. Sci. Mater. Electron. 28, 7668 (2017)

    Article  CAS  Google Scholar 

  14. P. Sharma, S. Singh, S.S. Gupta, I. Kaur, J. Mater. Sci. Mater. Electron. 29, 2883 (2018)

    Article  CAS  Google Scholar 

  15. P. Rani, V.K. Jindal, RSC Adv. 3, 802 (2013)

    Article  CAS  Google Scholar 

  16. G. Lu, K. Yu, Z. Wen, J. Chen, Nanoscale 5, 1353 (2013)

    Article  CAS  Google Scholar 

  17. J.C. Meyer, A.K. Geim, M.I. Katsnelson et al., Nature 446, 60 (2007)

    Article  CAS  Google Scholar 

  18. H.B. Wang, C.J. Zhang, Z.H. Liu, L. Wang, P.X. Han et al., J. Mater. Chem. 21, 5430 (2011)

    Article  CAS  Google Scholar 

  19. D.A.C. Brownson, D.K. Kampouris, C.E. Banks, J. Power Sources 196, 4873 (2011)

    Article  CAS  Google Scholar 

  20. Z.S. Wu, G. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Nano Energy 1, 107 (2012)

    Article  CAS  Google Scholar 

  21. G. Li, X. Zhang, X. Bai, X. Sun, E. Wang, H. Dai, Nat. Nanotechnol. 3, 538 (2008)

    Article  CAS  Google Scholar 

  22. A.K. Geim, Science 324, 1530 (2009)

    Article  CAS  Google Scholar 

  23. Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, Y. Chen, Appl. Phys. Lett. 92, 223303 (2008)

    Article  Google Scholar 

  24. Z.F. Liu, Q. Liu, Y. Huang, Y.F. Ma, S.G. Yin, X.Y. Zhang, W. Sun, Y.S. Chen, Adv. Mater. 20, 3924 (2008)

    Article  CAS  Google Scholar 

  25. A. Jafari, K. Tahani, D. Dastan, S. Asgary, Z. Shi, X.T. Shin, W.D. Zhou, H. Garmestani, S. Talu, Surf Interfaces 18, 100463 (2020)

    Article  Google Scholar 

  26. D. Dastan, J. At. Mol. Condens. Nano Phys. JAMCNP 2(2), 109–114 (2015)

    Google Scholar 

  27. D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci. Mater. Electron. 27, 12291–12296 (2016)

    Article  CAS  Google Scholar 

  28. R. Shakoury, A. Arman, S. Talu, D. Dastan, C. Luna, S. Rezaee, Opt. Quant. Electron 52, 270 (2020)

    Article  CAS  Google Scholar 

  29. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)

    Article  CAS  Google Scholar 

  30. J. Nelson, Curr. Opin. Solid State Mater. Sci. 6, 87 (2002)

    Article  CAS  Google Scholar 

  31. H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004)

    Article  CAS  Google Scholar 

  32. K. Shan, Z.Z. Yi, X.T. Yin, D. Dastan, H. Garmeshtani, Dalton Trans. (2020). https://doi.org/10.1039/d0dt00496k

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank the faculty of department of electrical and electronics engineering for their continuous support and time. We also thank UIET for providing us the facility and guidance to pursue work in this direction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preetika Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, P., Kumari, G., Neelankshi et al. Regulating electronic properties of graphene sheet via n-type doping for solar cells applications. J Mater Sci: Mater Electron 31, 14306–14313 (2020). https://doi.org/10.1007/s10854-020-03987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03987-3

Navigation