Skip to main content
Log in

Carbon nanotubes/acetylene black/Ecoflex with corrugated microcracks for enhanced sensitivity for stretchable strain sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The booming development of wearable devices especially flexible strain sensors has attracted widespread attention in human motion detection. Although many microstructures have been studied for sensing functions, the manufacture of strain sensors with excellent sensitivity and wide detection range remains a challenge. Herein, a corrugated microcrack structure was designed by the simple method of dripping carbon nanotubes (CNTsi)/acetylene black (AB) conductive mixture onto pre-stretched Ecoflex. This corrugated microcracks can effectively improve the sensitivity of the strain sensor. Compared with the CNTs/AB/Ecoflex-based strain sensor without pre-stretching (gauge factor (GF) of 340 within 0–25% strain and 207.58 for a strain of 38,100%), the strain sensor with corrugated microcracks through pre-stretching is significantly improved. GF is up to 1610 at the strain of 50–100% without sacrificing the strain detection range at the prestrains coefficient of 60%. In addition, the strain sensor with the structure of corrugated microcracks also demonstrates excellent performance including high elongation at break (up to 400% strain), great durability, and repeatability (> 1000 cycles). The CNTs/AB/Ecoflex-based strain sensor is successfully assembled on human to monitor the activity of joints, demonstrating its ability to be a promising candidate in wearable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Gu, H. Zhang, C. Ma et al., J. Mater. Chem C 7, 2353 (2019). https://doi.org/10.1039/c8tc05448g

    Article  CAS  Google Scholar 

  2. Y. Cheng, R. Wang, H. Zhai, J. Sun, Nanoscale 9, 3834 (2017). https://doi.org/10.1039/c7nr00121e

    Article  CAS  Google Scholar 

  3. T. He, C. Lin, L. Shi, R. Wang, J. Sun, ACS Appl. Mater. Interfaces 10, 9653 (2018). https://doi.org/10.1021/acsami.7b17975

    Article  CAS  Google Scholar 

  4. S. Chen, R. Wu, P. Li et al., ACS Appl. Mater. Interfaces 10, 37760 (2018). https://doi.org/10.1021/acsami.8b16591

    Article  CAS  Google Scholar 

  5. M.D. Ho, Y. Ling, L.W. Yap et al., Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201700845

    Article  Google Scholar 

  6. D. Liu, Q. Shi, S. Jin, Y. Shao, J. Huang, InfoMat (2019). https://doi.org/10.1002/inf2.12036

    Article  Google Scholar 

  7. F. Han, J. Li, S. Zhao et al., J. Mater. Chem. C 5, 10167 (2017). https://doi.org/10.1039/c7tc03636a

    Article  CAS  Google Scholar 

  8. C.-J. Lee, K.H. Park, C.J. Han et al., Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-08484-y

    Article  Google Scholar 

  9. Y. Zhou, P. Zhan, M. Ren et al., ACS Appl. Mater. Interfaces 11, 7405 (2019). https://doi.org/10.1021/acsami.8b20768

    Article  CAS  Google Scholar 

  10. C.H. Gong, K. Hu, X.P. Wang et al., Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201706559

    Article  Google Scholar 

  11. H. Liu, Q. Li, S. Zhang et al., J. Mater. Chem. C 6, 12121 (2018). https://doi.org/10.1039/c8tc04079f

    Article  CAS  Google Scholar 

  12. J. Ren, W. Zhang, Y. Wang et al., InfoMat (USA) 1, 396 (2019). https://doi.org/10.1002/inf2.12030

    Article  CAS  Google Scholar 

  13. L. Liang, H. Wei, P. Lejing et al., InfoMat (USA) 1, 54 (2019). https://doi.org/10.1002/inf2.12005

    Article  CAS  Google Scholar 

  14. H. Song, J. Zhang, D. Chen et al., Nanoscale 9, 1166 (2017). https://doi.org/10.1039/c6nr07333f

    Article  CAS  Google Scholar 

  15. D. Jiang, Y. Wang, B. Li et al., Macromol. Mater. Eng. (2019). https://doi.org/10.1002/mame.201900074

    Article  Google Scholar 

  16. J. Lee, S. Shin, S. Lee et al., ACS Nano 12, 4259 (2018). https://doi.org/10.1021/acsnano.7b07795

    Article  CAS  Google Scholar 

  17. T. Li, L. Chen, X. Yang et al., J. Mater. Chem. C 7, 1022 (2019). https://doi.org/10.1039/c8tc04893b

    Article  CAS  Google Scholar 

  18. T. Tran Quang, N.-E. Lee, Adv. Mater. (2017). https://doi.org/10.1002/adma.201603167

    Article  Google Scholar 

  19. Z. Cao, R. Wang, T. He, F. Xu, J. Sun, ACS Appl. Mater. Interfaces 10, 14087 (2018). https://doi.org/10.1021/acsami.7b19699

    Article  CAS  Google Scholar 

  20. Z. Ma, B. Su, S. Gong et al., ACS Sens. 1, 303 (2016). https://doi.org/10.1021/acssensors.5b00195

    Article  CAS  Google Scholar 

  21. L. Li, Y. Bai, L. Li, S. Wang, T. Zhang, Adv. Mater. (2017). https://doi.org/10.1002/adma.201702517

    Article  Google Scholar 

  22. J. Zhou, X. Xu, Y. Xin, G. Lubineau, Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201705591

    Article  Google Scholar 

  23. J. Gao, X. Wang, W. Zhai et al., ACS Appl. Mater. Interfaces 10, 34592 (2018). https://doi.org/10.1021/acsami.8b11527

    Article  CAS  Google Scholar 

  24. H. Sun, K. Dai, W. Zhai et al., ACS Appl. Mater. Interfaces 11, 36052 (2019). https://doi.org/10.1021/acsami.9b09229

    Article  CAS  Google Scholar 

  25. S. Chen, Y. Wei, S. Wei, Y. Lin, L. Liu, ACS Appl. Mater. Interfaces 8, 25563 (2016). https://doi.org/10.1021/acsami.6b09188

    Article  CAS  Google Scholar 

  26. S.Y. Park, Y. Kim, T. Kim, T.H. Eom, S.Y. Kim, H.W. Jang, InfoMat (USA) 1, 289 (2019). https://doi.org/10.1002/inf2.12029

    Article  CAS  Google Scholar 

  27. X. Li, R. Zhang, W. Yu et al., Sci. Rep. (2012). https://doi.org/10.1038/srep00870

    Article  Google Scholar 

  28. B. Zhang, J. Lei, D. Qi et al., Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201801683

    Article  Google Scholar 

  29. Y. Wang, J. Hao, Z. Huang et al., Carbon 126, 360 (2018). https://doi.org/10.1016/j.carbon.2017.10.034

    Article  CAS  Google Scholar 

  30. C.H. Gong, Y.X. Zhang, W. Chen et al., Adv. Sci. (2017). https://doi.org/10.1002/advs.201700231

    Article  Google Scholar 

  31. M. Li, K. Chang, W. Zhong et al., Appl. Surf. Sci. 486, 249 (2019). https://doi.org/10.1016/j.apsusc.2019.04.271

    Article  CAS  Google Scholar 

  32. S. Kundu, R. Sriramdas, K.R. Amin, A. Bid, R. Pratap, N. Ravishankar, Nanoscale 9, 9581 (2017). https://doi.org/10.1039/c7nr02415k

    Article  CAS  Google Scholar 

  33. C. Luo, J. Jia, Y. Gong, Z. Wang, Q. Fu, C. Pan, ACS Appl. Mater. Interfaces 9, 19955 (2017). https://doi.org/10.1021/acsami.7b02988

    Article  CAS  Google Scholar 

  34. L. Lu, X. Wei, Y. Zhang et al., J. Mater. Chem. C 5, 7035 (2017). https://doi.org/10.1039/c7tc02429k

    Article  CAS  Google Scholar 

  35. X. Zhang, J. Cao, Y. Yang, X. Wu, Z. Zheng, X. Zhang, Chem. Eng. J. 374, 730 (2019). https://doi.org/10.1016/j.cej.2019.05.211

    Article  CAS  Google Scholar 

  36. C. Liu, S. Han, H. Xu, J. Wu, C. Liu, ACS Appl. Mater. Interfaces 10, 31716 (2018). https://doi.org/10.1021/acsami.8b12674

    Article  CAS  Google Scholar 

  37. S. Wang, P. Xiao, Y. Liang et al., J. Mater. Chem. C 6, 5140 (2018). https://doi.org/10.1039/c8tc00433a

    Article  CAS  Google Scholar 

  38. B. Yin, Y. Wen, T. Hong et al., ACS Appl. Mater. Interfaces 9, 32054 (2017). https://doi.org/10.1021/acsami.7b09652

    Article  CAS  Google Scholar 

  39. Y.C. Cai, J. Shen, G. Ge et al., ACS Nano 12, 56 (2018). https://doi.org/10.1021/acsnano.7b06251

    Article  CAS  Google Scholar 

  40. X. Li, L. Zong, X. Wu, J. You, M. Li, C. Li, J. Mater. Chem C 6, 3212 (2018). https://doi.org/10.1039/c8tc00265g

    Article  CAS  Google Scholar 

  41. Y. Pang, H. Tian, L. Tao et al., ACS Appl. Mater. Interfaces 8, 26458 (2016). https://doi.org/10.1021/acsami.6b08172

    Article  CAS  Google Scholar 

  42. S. Zhang, H. Liu, S. Yang et al., ACS Appl. Mater. Interfaces 11, 10922 (2019). https://doi.org/10.1021/acsami.9b00900

    Article  CAS  Google Scholar 

  43. M. Ren, Y. Zhou, Y. Wang et al., Chem. Eng. J. 360, 762 (2019). https://doi.org/10.1016/j.cej.2018.12.025

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by The National Natural Science Foundation of China. Civil Aviation University of China (No. U1833118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronghui Guo or Hong Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ren, E., Tang, H. et al. Carbon nanotubes/acetylene black/Ecoflex with corrugated microcracks for enhanced sensitivity for stretchable strain sensors. J Mater Sci: Mater Electron 31, 14145–14156 (2020). https://doi.org/10.1007/s10854-020-03969-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03969-5

Navigation