Skip to main content
Log in

Fabrication of WO3 photoanode on crystalline Si solar cell for water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An integrated device of solar cell and photocatalysis (p-Si fronted solar cell/ CoSi2/WO3) has been used as photoanode for water splitting. The WO3 had been synthesized by co-electrodeposition of CoW on the p-Si fronted solar cell and followed by the annealing and acid treatment. The XRD and SEM show the amorphous structure for both as-depostion and after treatment samples. After the treatment, XPS and the ellipsometer spectroscopy shows that the CoSi2 and WO3 was formed with the band gap of 1.32 eV and 2.67 eV, respectively. Without additional power, we had demonstrated that the p-Si fronted solar cell/CoSi2/WO3 can achieve ~ 0.046 mA/cm2 photocurrent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Sayama et al., Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem. Phys. Lett. 227, 387–391 (1997)

    Google Scholar 

  2. X. Shi et al., Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling. Nat. Commun. 7(1), 11943 (2016)

    CAS  Google Scholar 

  3. M.M. Momeni, Dye-sensitized solar cell and photocatalytic performance of nanocomposite photocatalyst prepared by electrochemical anodization. Bull. Mater. Sci. 39(6), 1389–1395 (2016)

    CAS  Google Scholar 

  4. M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, Photocatalytic properties of Cr–TiO2 nanocomposite photoelectrodes produced by electrochemical anodisation of titanium. Surf. Eng. 32(7), 520–525 (2016)

    CAS  Google Scholar 

  5. I. Tsuji, H. Kato, A. Kudo, Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands. Chem. Mater. 18(7), 1969–1975 (2006)

    CAS  Google Scholar 

  6. R.H. Coridan et al., Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. J. Phys. Chem. C 117(14), 6949–6957 (2013)

    CAS  Google Scholar 

  7. M.G. Walter et al., Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    CAS  Google Scholar 

  8. H. Wang, P. Xu, T. Wang, The preparation and properties study of photocatalytic nanocrystalline/nanoporous WO3 thin films. Mater. Des. 23, 331–336 (2002)

    CAS  Google Scholar 

  9. F.F. Abdi et al., Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013)

    Google Scholar 

  10. C. Wang, X. Zhang, Y. Liu, Promotion of multi-electron transfer for enhanced photocatalysis: a review focused on oxygen reduction reaction. Appl. Surf. Sci. 358, 28–45 (2015)

    CAS  Google Scholar 

  11. P. Chen et al., A novel approach to synthesize the amorphous carbon-coated WO3 with defects and excellent photocatalytic properties. Mater. Des. 106, 22–29 (2016)

    CAS  Google Scholar 

  12. Y.M. Hunge et al., Photoelectrocatalytic degradation of methyl red using sprayed WO3 thin films under visible light irradiation. J. Mater. Sci. 26(11), 8404–8412 (2015)

    CAS  Google Scholar 

  13. G.H. Go et al., PVP-assisted synthesis of nanostructured transparent WO3 thin films for photoelectrochemical water splitting. Mater. Des. 90, 1005–1009 (2016)

    CAS  Google Scholar 

  14. H. Ali et al., Thermal stability of hole-selective tungsten oxide in situ transmission electron microscopy study. Sci. Rep. 8(1), 12651 (2018)

    Google Scholar 

  15. J. Su et al., Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011)

    CAS  Google Scholar 

  16. C. Wang et al., Multi-heterojunction photocatalysts based on WO3 nanorods: structural design and optimization for enhanced photocatalytic activity under visible light. Chem. Eng. J. 237, 29–37 (2014)

    CAS  Google Scholar 

  17. S.Y. Reece et al., Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011)

    CAS  Google Scholar 

  18. O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)

    CAS  Google Scholar 

  19. K. Shankar et al., Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18(6), 065707 (2007)

    Google Scholar 

  20. A.R. Bin, M. Yusoff, J. Jang, Highly efficient photoelectrochemical water splitting by a hybrid tandem perovskite solar cell. Chem. Commun. (Camb) 52(34), 5824–5827 (2016)

    CAS  Google Scholar 

  21. X. Luo et al., Self-powered light-induced plating of metals on crystalline silicon solar cells. Sol. Energy 173, 277–282 (2018)

    CAS  Google Scholar 

  22. F. Su, C. Liu, P. Huang, Establishing relationships between electrodeposition techniques, microstructure and properties of nanocrystalline Co–W alloy coatings. J. Alloy. Compd. 557, 228–238 (2013)

    CAS  Google Scholar 

  23. N. Eliaz, T.M. Sridhar, E. Gileadi, Synthesis and characterization of nickel tungsten alloys by electrodeposition. Electrochim. Acta 50(14), 2893–2904 (2005)

    CAS  Google Scholar 

  24. N. Lundberg, M. Ostling, Thermally stable low ohmic contacts to p-Type 6H-SiC using cobalt silicides. Solid-State Electron. 39, 1559–1565 (1996)

    CAS  Google Scholar 

  25. X. Chen et al., Electrodeposition of ZnO thin films with controllable impurities and microstructures. Appl. Mech. Mater. 320, 196–201 (2013)

    Google Scholar 

  26. A.A. Istratov, E.R. Weber, Electrical properties and recombination activity ofcopper, nickel and cobalt in silicon. Appl. Phys. A 66, 123–136 (1998)

    CAS  Google Scholar 

  27. M. Ibrahim, S.A.E. Rehim, S. Moussa, Electrodeposition of noncrystalline cobalt–tungsten alloys from citrate electrolytes. J. Appl. Electrochem. 33, 627–633 (2003)

    CAS  Google Scholar 

  28. M. Donten, H. Cesiulis, Z. Stojek, Electrodeposition and properties of Ni-W, Fe-W and Fe-Ni-W amorphous alloys. A comparative study. Electrochim Acta 45, 3389–3396 (2000)

    CAS  Google Scholar 

  29. T.H. Fleisch, G.J. Mains, An XPS study of the UV reduction and photochromism of MoO3 and WO3. J. Chem. Phys. 76(2), 780–786 (1982)

    CAS  Google Scholar 

  30. J.P. Cloarec et al., Immobilization of homooligonucleotide probe layers onto Si/SiO2 substrates: characterization by electrochemical impedance measurements and radiolabelling. Biosens. Bioelectron. 17, 405–412 (2002)

    CAS  Google Scholar 

  31. J. Zhao, C.M. Jones, D.M. Poirier, Characterization of CoSi2 formation by x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. B (1999). https://doi.org/10.1116/1.591102

    Article  Google Scholar 

  32. P. Bera et al., XRD, FESEM and XPS studies on heat treated Co–W electrodeposits. Mater. Lett. 76, 103–105 (2012)

    CAS  Google Scholar 

  33. H. Seenivasan, P. Bera, Effect of P codeposition on the structure and microhardness of Co-W coatings electrodeposited from gluconate bath. Surf. Interface Anal. 49(6), 554–569 (2017)

    CAS  Google Scholar 

  34. Y.M. Hunge, Sunlight assisted photoelectrocatalytic degradation of benzoic acid using stratified WO3/TiO2 thin films. Ceram. Int. 43(13), 10089–10096 (2017)

    CAS  Google Scholar 

  35. Y.M. Hunge et al., A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue. J. Taiwan Inst. Chem. Eng. 85, 273–281 (2018)

    CAS  Google Scholar 

  36. X. Chen et al., Synthesis and characterization of ferromagnetic Nickel-Cobalt silicide catalysts with good sulfur tolerance in hydrodesulfurization of dibenzothiophene. J. Phys. Chem. C 116(47), 24968–24976 (2012)

    CAS  Google Scholar 

  37. J. Zhao, D.M. Poirier, Characterization of cobalt silicide formation by X-ray photoelectron spectroscopy. II. CoSi2. Surf. Sci. Spectra 7(4), 329–335 (2000)

    CAS  Google Scholar 

  38. Y.-L. Jiang et al., Schottky barrier height lowering induced by CoSi2 nanostructure. Appl. Phys. A 99(1), 93–98 (2009)

    Google Scholar 

  39. S.S. Shenouda, H.Y. Zahran, I.S. Yahia, Facile synthesis and characterization of Co3O4 nanoplates coated with small nanorods. Mater. Res. Exp. 6(10), 105042 (2019)

    CAS  Google Scholar 

  40. K.H. Yoon et al., Effect of Pt layers on the photoelectrochemical properties of a WO3/p-Si electrode. J. Appl. Phys. 84(7), 3954–3959 (1998)

    CAS  Google Scholar 

  41. K.H. Yoon, C.W. Shin, D.H. Kang, Photoelectrochemical conversion in a WO3 coated p-Si photoelectrode: effect of annealing temperature. J. Appl. Phys. 81(10), 7024–7029 (1997)

    CAS  Google Scholar 

  42. C. Pirri et al., Surface electronic structure of CoSi2(111). Phys. Rev. B 38(2), 1512–1515 (1988)

    CAS  Google Scholar 

  43. I.V. Belousov et al., Self formation of Si nanostructured layer at the metal silicide/silicon interface. Mater. Sci. Eng. C 23, 181–186 (2003)

    Google Scholar 

  44. W.L. Dai, M.H. Qiao, J.F. Deng, XPS studies on a novel amorphous Ni-Co-W-B alloy powder. Appl. Surf. Sci. 120, 119–124 (1997)

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Natural Science Foundation of China (Grant Nos. 61664009, 51771169). This work is also funded in part by General Project of Applied Basic Research of Yunnan Science and Technology Department (Grant No. 2019FB-4), Scientific Research Foundation of Yunnan Education Department (Grant No. 2019J0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Guan, L., Li, J. et al. Fabrication of WO3 photoanode on crystalline Si solar cell for water splitting. J Mater Sci: Mater Electron 31, 14137–14144 (2020). https://doi.org/10.1007/s10854-020-03968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03968-6

Navigation