Skip to main content

Advertisement

Log in

Enhancement of power conversion efficiency of Al/ZnO/p-Si/Al heterojunction solar cell by modifying morphology of ZnO nanostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a cost-effective sol–gel method for synthesis of ZnO nanostructure to make Al/ZnO/p-Si/Al heterojunction solar cell. Here, crystalline ZnO nanostructure was grown on p-silicon and annealed at 300 °C, 400 °C and 500 °C for application in heterojunction solar cell. The optimum temperature for obtaining uniform crystalline nanostructure was 500 °C, as confirmed from XRD and SEM imaging. As investigated by UV–Vis spectroscopy, the ZnO nanostructure layer exhibited high transmittance in the visible spectrum and has a direct band gap of 3.26–3.28 eV. The power conversion efficiency of Al/ZnO/p-Si/Al solar cell is enhanced from 1.06 to 2.22% due to increase in surface area of ZnO by formation of crystalline nanostructure due to increase of annealing temperature. The optimum value of short-circuit current (Isc) and open-circuit voltage (Voc) was measured using current–voltage (I–V) under AM 1.5 illuminations and found to be 9.97 mA and 460 mV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Green, Sol. Energy 76, 3–8 (2004)

    Article  CAS  Google Scholar 

  2. R. Pietruszka, B.S. Witkowski, E. Zielony, K. Gwozdz, E. Placzek-Popko, M. Godlewski, Sol. Energy 155, 1282–1288 (2017)

    Article  CAS  Google Scholar 

  3. E. Shi, H. Li, L. Yang, L. Zhang, Z. Li, P. Li, Y. Shang, S. Wu, X. Li, J. Wei, K. Wang, Nano Lett. 13, 1776–1781 (2013)

    Article  CAS  Google Scholar 

  4. E. Shi, L. Zhang, Z. Li, P. Li, Y. Shang, Y. Jia, J. Wei, K. Wang, H. Zhu, D. Wu, S. Zhang, Sci. Rep. 2, 884 (2012)

    Article  Google Scholar 

  5. T. Minami, Semicond. Sci. Technol. 20, S35 (2005)

    Article  CAS  Google Scholar 

  6. A.O. Mousa, N.F. Habubi, N.A. Nema, Int. Lett. Chem. Phys. Astro. 51, 69–77 (2015)

    Article  Google Scholar 

  7. S. Chen, W. Zhao, W. Liu, S. Zhang, Appl. Surf. Sci. 255, 2478–2484 (2008)

    Article  CAS  Google Scholar 

  8. S.K. Behura, S. Nayak, I. Mukhopadhyay, O. Jani, Carbon 67, 766–774 (2014)

    Article  CAS  Google Scholar 

  9. D.A. Boyd, W.H. Lin, C.C. Hsu, M.L. Teague, C.C. Chen, Y.Y. Lo, W.Y. Chan, W.B. Su, T.C. Cheng, C.S. Chang, C.I. Wu, Nat. Commun. 6, 6620 (2015)

    Article  CAS  Google Scholar 

  10. G. Fan, H. Zhu, K. Wang, J. Wei, X. Li, Q. Shu, N. Guo, D. Wu, A.C.S. Appl, Mater. Interfaces 3, 721–725 (2011)

    Article  CAS  Google Scholar 

  11. O. Duyar, F. Placido, H.Z. Durusoy, J. Phys. D 41, 095307 (2008)

    Article  Google Scholar 

  12. Y. Bessekhouad, D. Robert, J.V. Weber, J. Photochem. Photobiol. A 157, 47–53 (2003)

    Article  CAS  Google Scholar 

  13. I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, A. Terrasi, Thin Solid Films 520, 4432–4435 (2012)

    Article  CAS  Google Scholar 

  14. Y.J. Lee, M.T. Lloyd, D.C. Olson, R.K. Grubbs, P. Lu, R.J. Davis, J.A. Voigt, J.W. Hsu, J. Phys. Chem. C 113, 15778–15782 (2009)

    Article  CAS  Google Scholar 

  15. S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Thin Solid Films 552, 150–154 (2014)

    Article  CAS  Google Scholar 

  16. D.C. Look, Mater. Sci. Eng. B 80, 383–387 (2001)

    Article  Google Scholar 

  17. M. Rusop, Trans. Electr. Electron. Mater 13, 102–105 (2012)

    Article  Google Scholar 

  18. L. Shen, Z.Q. Ma, C. Shen, F. Li, B. He, F. Xu, Superlattices Microstruct 48, 426–433 (2010)

    Article  CAS  Google Scholar 

  19. X. Liu, Z. Jin, Z. Liu, K. Yu, S. Bu, Appl. Surf. Sci. 252, 8668–8672 (2006)

    Article  CAS  Google Scholar 

  20. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Nano Lett. 6, 2768–2772 (2006)

    Article  CAS  Google Scholar 

  21. W.L. Hughes, Z.L. Wang, Appl. Phys. Lett. 82, 2886–2888 (2003)

    Article  CAS  Google Scholar 

  22. Z.L. Wang, J. Song, Science 312, 242–246 (2006)

    Article  CAS  Google Scholar 

  23. K. Prashanthi, M. Naresh, V. Seena, T. Thundat, V.R. Rao, J. Microelectromech. Syst. 21, 259–261 (2011)

    Article  Google Scholar 

  24. P. Ray, V.R. Rao, J. Microelectromech. Syst. 22, 995–997 (2013)

    Article  CAS  Google Scholar 

  25. Y. Choi, K. Lee, C.H. Park, K.H. Lee, J.W. Nam, M.M. Sung, K.M. Lee, H.C. Sohn, S. Im, J. Phys. D 43, 345101 (2010)

    Article  Google Scholar 

  26. R. Pietruszka, B.S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. Placzek-Popko, M. Godlewski, Sol. Energy Mater. Sol. Cells 143, 99–104 (2015)

    Article  CAS  Google Scholar 

  27. B.L. Zhu, X.Z. Zhao, F.H. Su, G.H. Li, X.G. Wu, J. Wu, R. Wu, Vacuum 84, 1280–1286 (2010)

    Article  CAS  Google Scholar 

  28. A.A. Ibrahim, A. Ashour, J. Mater. Sci. Mater. Electron. 17, 835–839 (2006)

    Article  CAS  Google Scholar 

  29. N.F. Habubi, A.O. Mousa, World Sci. News 18, 118–132 (2015)

    CAS  Google Scholar 

  30. R.A. Ismail, S.M.H. Jawad, N. Hussein, Appl Phys A 117, 1977–1984 (2014)

    Article  CAS  Google Scholar 

  31. N. Aqab, H. Riaz and A. Nayfeh, In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) 0598-0601 (2016).

  32. R. Pietruszka, R. Schifano, T.A. Krajewski, B.S. Witkowski, K. Kopalko, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. Placzek-Popko, M. Godlewski, Sol. Energy Mater. Sol. Cells 147, 164–170 (2016)

    Article  CAS  Google Scholar 

  33. M. Dutta, S. Sarkar, T. Ghosh, D. Basak, J. Phys. Chem. C 116, 20127–20131 (2012)

    Article  CAS  Google Scholar 

  34. Z. Zang, Appl. Phys. Lett. 112, 042106 (2018)

    Article  Google Scholar 

  35. E.F. Keskenler, M.F. Keskenler, M. Tomakin, V. Nevruzoglu, J. Mater. Sci. Mater. Electron. 30, 6082–6087 (2019)

    Article  CAS  Google Scholar 

  36. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  37. A. Saboor, S.M. Shah, H. Hussain, Mater. Sci. Semicond. Process. 93, 215–225 (2019)

    Article  CAS  Google Scholar 

  38. C. Wang, X. Wang, B.Q. Xu, J. Zhao, B. Mai, P. Peng, G. Sheng, J. Fu, J. Photochem. Photobiol. A 168, 47–52 (2004)

    Article  CAS  Google Scholar 

  39. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano Lett. 3, 30 (2013)

    Article  Google Scholar 

  40. M.G.M. Sabri, B.Z. Azmi, Z. Rizwan, M.K. Halimah, M. Hashim, M.H.M. Zaid, Int. J. Phys. Sci. 6, 1388–1394 (2011)

    CAS  Google Scholar 

  41. J.Y. Park, S.W. Choi, S.S. Kim, J. Phys. D 44, 205403 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for financial support from the Ministry of Tribal Affairs (NFHE-ST) and UGC-National Fellowships for OBC and also would like to thank Tezpur University for providing fabrication facilities and characterization facilities (SAIC, Tezpur University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rewrewa Narzary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narzary, R., Phukan, P., Maity, S. et al. Enhancement of power conversion efficiency of Al/ZnO/p-Si/Al heterojunction solar cell by modifying morphology of ZnO nanostructure. J Mater Sci: Mater Electron 31, 4142–4149 (2020). https://doi.org/10.1007/s10854-020-02962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02962-2

Navigation