Skip to main content
Log in

Phonon sideband and Judd–Ofelt analyses of trivalent europium doped fluoroborosilicate glasses for red emitting device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Present study reports the characterization of Eu3+ ions doped fluoroborosilicate glasses (FBSEU) with chemical composition 10BaO + 10ZnF2 + 10K2O + 20SiO2 + (50 − x) B2O3 + xEu2O3 (x = 0.1,0.5,1,1.5 and 2 mol%) synthesized using melt quenching technique. XRD and FTIR analyses were carried out to obtain the structural characteristics. Through Differential Scanning Calorimetry (DSC) analysis, the glass transition temperature (Tg) of the sample was determined. To study the luminescence properties and local structural evolution, absorption, photoluminescence emission and excitation spectra were recorded and analysed. For evaluating the Eu3+-ligand bond within the host, bonding parameter was calculated and is found to be covalent. The phonon energy of the prepared sample was calculated from PSB (phonon side band) spectrum and is obtained as 990 cm−1. The glasses show strong red emission via 5D0 → 7F2 transition with 392 nm excitation. Judd–Ofelt (JO) analysis was implemented using the emission spectra to assess the radiative properties such as radiative transition probabilities (A), radiative lifetime (τR), branching ratios (βR), etc. A higher branching ratio (64%) recommends the present glassy system for laser applications. The luminescent lifetime was calculated from the decay curve analysis (2.87 ms) and compared with theoretically predicted values (4.2 ms) using JO theory. Quantum efficiency of the sample was also determined experimentally and theoretically. The emission intensities were characterized using CIE chromaticity diagram and the FBSEU glasses gives red emission with excellent colour purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Som, B. Karmakar, J. Phys. sCondens. Matter 22, 035603 (2010). https://doi.org/10.1088/0953-8984/22/3/035603

    Article  CAS  Google Scholar 

  2. H. Lin, D. Yang, G. Liu, T. Ma, B. Zhai, Q. An, J. Yu, X. Wang, X. Liu, E.Y.B. Pun, J. Lumin. 113, 121 (2005). https://doi.org/10.1016/j.jlumin.2004.09.115

    Article  CAS  Google Scholar 

  3. B.H. Babu, V.V.R.K. Kumar, J. Lumin. 169, 16 (2016). https://doi.org/10.1016/j.jlumin.2015.08.058

    Article  CAS  Google Scholar 

  4. P. Avouris, A. Camplon, M.A. El-Sayed, Chem. Phys. Lett. 50, 9 (1977). https://doi.org/10.1016/0009-2614(77)80669-6

    Article  CAS  Google Scholar 

  5. V. Venkatramu, D. Navarro-Urrios, P. Babu, C.K. Jayasankar, V. Lavin, J. Non-Cryst, Solids 351, 929 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.02.010

    Article  CAS  Google Scholar 

  6. P. Babu, K.H. Jang, H. JinSeo, C.K. Jayasankar, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2177448

    Article  Google Scholar 

  7. Bo Peng, T. Izumitani, Opt. Prop. Opt. Mater. 4, 797 (1995). https://doi.org/10.1016/0925-3467(95)00032-1

    Article  CAS  Google Scholar 

  8. C.W. Sinton, W.C. La Course, Mater. Res. Bull. 36, 2471 (2001). https://doi.org/10.1016/S0025-5408(01)00724-3

    Article  CAS  Google Scholar 

  9. P. Goyal, Y.K. Sharma, S. Pal, U.C. Bind, S.-C. Huang, S.-L. Chung, Mater. Today Proc. 5, 344 (2018). https://doi.org/10.1016/j.matpr.2017.11.091

    Article  CAS  Google Scholar 

  10. P. Goyal, Y.K. Sharma, S. Pal, U.C. Bind, S.-C. Huang, S.-L. Chung, J. Non Cryst. Solids 463, 118 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.03.009

    Article  CAS  Google Scholar 

  11. X. Gao, Y. Tian, Q. Liu, B. Li, W. Tang, J. Zhang, Xu Shiqing, Opt. Laser Technol. 111, 115–120 (2019). https://doi.org/10.1016/j.optlastec.2018.09.043

    Article  CAS  Google Scholar 

  12. P.V. Reddy, C.L. Kanth, V.P. Kumar, N. Veeraiah, P. Kistaiah, J. Non Cryst. Solids 351, 3752–3759 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.08.039

    Article  CAS  Google Scholar 

  13. Y. Dwivedi, A. Bahadur, S.B. Rai, J. Non Cryst. Solids 356, 1650–1654 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.06.013

    Article  CAS  Google Scholar 

  14. G. Anjaiah, S.K.N. Rasool, P. Kistaiah, J. Lumin. 159, 110–118 (2015). https://doi.org/10.1016/j.jlumin.2014.10.068

    Article  CAS  Google Scholar 

  15. Y. Dwivedi, S.B. Rai, Opt. Mater. 31, 1472–1477 (2009). https://doi.org/10.1016/j.optmat.2009.02.005

    Article  CAS  Google Scholar 

  16. S.G. Cost, É.D. Barioni, A. Ignácio, J. Albuquerque, N.O.S. Câmara, C. Pavani, L.B. Vitoretti, A.S. Damazo, S.H.P. Farsky, A. Lino-dos-Santos-Franco, Sci. Rep. 7, 12670 (2017). https://doi.org/10.1038/s41598-017-13117-5

    Article  CAS  Google Scholar 

  17. G.D. Massa, H.-H. Kim, R.M. Wheeler, C.A. Mitchell, Hortiscience 43, 7 (2008). https://doi.org/10.21273/HORTSCI.43.7.1951

    Article  Google Scholar 

  18. H.-C. Wu, C.-C. Lin, HortScience 47, 1490–1494 (2012). https://doi.org/10.21273/HORTSCI.47.10.1490

    Article  CAS  Google Scholar 

  19. N.T. Thanh, V.X. Quang, V.P. Tuyen, N.V. Tam, T. Hayakawa, B.T. Huy, Opt. Mater. 34, 1477–1481 (2012). https://doi.org/10.1016/j.optmat.2012.03.006

    Article  CAS  Google Scholar 

  20. M. Dejneka, E. Snitzer, R.E. Riman, J. Lumin. 65, 227–245 (1995). https://doi.org/10.1016/0022-2313(95)00073-9

    Article  CAS  Google Scholar 

  21. M. Wachtler, A. Speghini, S. Pigorini, R. Rolli, M. Bettinelli, J. Non Cryst. Solids 217, 111–114 (1997). https://doi.org/10.1016/S0022-3093(97)00282-2

    Article  CAS  Google Scholar 

  22. R. Xu, Y. Tian, L. Hu, J. Zhang, Opt. Lett. 36, 1173–1175 (2011). https://doi.org/10.1364/OL.36.001173

    Article  CAS  Google Scholar 

  23. D.M. Mcpherson, S.C. Murray, Germanate glass for mid-infrared medical optical fiber, United States Patent (1996).

  24. K. Marimuthu, R.T. Karunakaran, S.S. Babu, G. Muralidharan, S. Arumugam, C.K. Jayasankar, Solid State Sci. 11, 1297–1302 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.04.011

    Article  CAS  Google Scholar 

  25. P. Krishnapuram, S.K. Jakka, C. Thummala, R.M. Lalapeta, J. Mol. Struct. 1028, 170–175 (2012). https://doi.org/10.1016/j.molstruc.2012.06.037

    Article  CAS  Google Scholar 

  26. G. Hou, C. Zhang, Fu Wenbin, G. Li, J. Xia, Y. Ping, Ceram. Int. 45(2019), 11850–11851 (1855). https://doi.org/10.1016/j.ceramint.2019.03.066

    Article  CAS  Google Scholar 

  27. X. Gao, Q. Zhang, Yu Jingbo, W. Tang, Y. Li, Lu Anxian, J. Non Cryst. Solids 481, 98–102 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.10.032

    Article  CAS  Google Scholar 

  28. W.T. Carnall, H. Crosswhite, H.M. Crosswhite, Argonne National Laboratory Report ANL-78–95.

  29. S.A. Kumar, K.V. Krishnaiah, K. Marimuthu, Phys. B 416, 88–100 (2013). https://doi.org/10.1016/j.physb.2013.02.022

    Article  CAS  Google Scholar 

  30. S.K. Jose, S. Gopi, S.M. Simon, P.R. Mohan, C. Joseph, N.V. Unnikrishnan, P.R. Biju, J. Non Cryst. Solids 452, 245–252 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.08.041

    Article  CAS  Google Scholar 

  31. M.S. Sajna, S. Gopi, V.P. Prakashan, M.S. Sanu, C. Joseph, P.R. Biju, N.V. Unnikrishnan, Opt. Mater. 70, 31–40 (2017). https://doi.org/10.1016/j.optmat.2017.04.064

    Article  CAS  Google Scholar 

  32. T. Miyakawa, D.L. Dexter, Phys. Rev. B 1, 2961–2970 (1970). https://doi.org/10.1103/PhysRevB.1.2961

    Article  Google Scholar 

  33. S. Karthika, M.S. Sajna, S. Thomas, K.P. Revathy, P.R. Biju, N.V. Unnikrishnan, J. Alloys Compd. 615, 188–193 (2014). https://doi.org/10.1016/j.jallcom.2014.06.155

    Article  CAS  Google Scholar 

  34. S. Gopi, S.K. Jose, A. George, N.V. Unnikrishnan, C. Joseph, P.R. Biju, J Mater. Sci. Mater. Electron. 29, 674–682 (2018). https://doi.org/10.1007/s10854-017-7961-8

    Article  CAS  Google Scholar 

  35. N. Wada, K. Kojima, J. Lumin. 126, 53–62 (2007). https://doi.org/10.1016/j.jlumin.2006.05.002

    Article  CAS  Google Scholar 

  36. G. Jose, Phonon side band and local vibrational analysis of Eu3+ doped glasses. Doctoral Thesis, Mahatma Gandhi University, Kottayam, India, 2001, pp. 78–98.

  37. D. Ramachari, L. RamaMoorthy, C.K. Jayasankar, J. Lumin. 143, 674–679 (2013). https://doi.org/10.1016/j.jlumin.2013.05.025

    Article  CAS  Google Scholar 

  38. J.L. Adam, V. Poncon, J. Lucas, G. Boulon, J. Non-Cryst, Solids 91, 191–202 (1987). https://doi.org/10.1016/j.jallcom.2004.03.102

    Article  CAS  Google Scholar 

  39. M. Nogami, N. Umehara, T. Hayakawa, Phys. Rev. 58, 6166–6171 (1998). https://doi.org/10.1016/S0022-3093(87)80302-2

    Article  CAS  Google Scholar 

  40. S. Balaji, P.A. Azeem, R.R. Reddy, Phys. B 394, 62–68 (2007). https://doi.org/10.1016/j.physb.2007.02.009

    Article  CAS  Google Scholar 

  41. R.T. Karunakaran, K. Marimuthu, S.S. Babu, S. Arumugam, Solid State Sci. 11, 1882–1889 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.08.001

    Article  CAS  Google Scholar 

  42. M.V.V. Kumar, B.C. Jamalaiah, K.R. Gopal, R.R. Reddy, J. Solid State Chem. 184, 2145–2149 (2011). https://doi.org/10.1016/j.jssc.2011.06.007

    Article  CAS  Google Scholar 

  43. A.M. Babu, B.C. Jamalaiah, T. Suhasini, T.S. Rao, L.R. Moorthy, Solid State Sci. 13, 574–578 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.12.028

    Article  CAS  Google Scholar 

  44. R.V. Kumar, K. Maheshvaran, V. Sudarsan, K. Marimuthu, J. Lumin. 154, 160 (2014). https://doi.org/10.1016/j.optmat.2012.12.012

    Article  CAS  Google Scholar 

  45. B.R. Judd, Phys. Rev. 127, 750–761 (1962). https://doi.org/10.1103/PhysRev.127.750

    Article  CAS  Google Scholar 

  46. G.S. Ofelt, J. Chem. Phys. 37, 511–520 (1962). https://doi.org/10.1063/1.1701366

    Article  CAS  Google Scholar 

  47. H. Ebendorff-Heidepriem, D. Ehrt, J. Non Cryst. Solids 208, 205–216 (1996). https://doi.org/10.1016/S0022-3093(96)00524-8

    Article  CAS  Google Scholar 

  48. K. Swapna, S. Mahamuda, A. SrinivasaRao, T. Sasikala, P. Packiyaraj, L.R. Moorthy, G.V. Prakash, J. Lumin. 156, 80–86 (2014). https://doi.org/10.1016/j.jlumin.2014.07.022

    Article  CAS  Google Scholar 

  49. C.S.D. Viswanath, K.V. Krishnaiah, C.K. Jayasankar, Opt. Mater. 83, 348–355 (2018). https://doi.org/10.1016/j.optmat.2018.05.057

    Article  CAS  Google Scholar 

  50. X. Joseph, R. George, S. Thomas, M. Gopinath, M.S. Sajna, N.V. Unnikrishnan, Opt. Mater. 37, 552–560 (2014). https://doi.org/10.1016/j.optmat.2014.07.021

    Article  CAS  Google Scholar 

  51. J.C. de Mello, H.F. Wittmann, R.H. Friend, Adv. Mater. 9, 230 (1997). https://doi.org/10.1002/adma.19970090308

    Article  Google Scholar 

  52. L. Porres, A. Holland, L.-O. Palsson, A.P. Monkman, C. Kemp, A. Beeby, J. Fluoresc. 16, 2 (2006). https://doi.org/10.1007/s10895-005-0054-8

    Article  CAS  Google Scholar 

  53. S. Gopi, P.R. Mohan, E. Sreeja, N.V. Unnnikrishnan, C. Joseph, P.R. Biju, J. Electron. Mater. 48, 4300–4309 (2019). https://doi.org/10.1007/s11664-019-07198-3

    Article  CAS  Google Scholar 

  54. E. Sreeja, S. Gopi, V. Vidyadharan, P.R. Mohan, C. Joseph, N.V. Unnikrisnan, P.R. Biju, Powder Technol. 323, 445 (2018). https://doi.org/10.1016/j.optmat.2018.02.003

    Article  CAS  Google Scholar 

  55. P.R. Mohan, S. Gopi, V. Vidyadharan, A. George, C. Joseph, N.V. Unnikrishnan, P.R. Biju, J. Lumin. 187, 113–120 (2017). https://doi.org/10.1016/j.jlumin.2017.03.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to University Grants Commission of India (UGC India) and Department of Science and Technology (DST), India for the financial assistance through Special Assistance Programme (SAP)—Departmental Research Support (DRS) (No. F.530/12/DRS/2009(SAP-1)) and DST-PURSE P II (SR 417 & SR 416 dated 27-02-2017) programs, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Biju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, A., Remya Mohan, P., Krishnapriya, T. et al. Phonon sideband and Judd–Ofelt analyses of trivalent europium doped fluoroborosilicate glasses for red emitting device applications. J Mater Sci: Mater Electron 31, 13531–13540 (2020). https://doi.org/10.1007/s10854-020-03909-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03909-3

Navigation