Skip to main content
Log in

Phonon Sideband and Intensity Parameter Analysis of Eu3+/Tb3+-Doped Zinc Sodium Borotellurite Glasses for Multicolor Emission

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A spectroscopic study of Eu3+, Tb3+ and Eu3+/Tb3+ ions-doped zinc sodium borotellurite (ZNB) glass synthesized by a melt-quenching method was performed via photoluminescence spectra and luminescence decay. The results of X-ray diffraction showed the amorphous materials of the prepared glass, and also indicated the difference in absorption spectra between glass samples doped by Eu3+ and Tb3+ ions. Three phonon energies of the ZNB host lattice were found around 932 cm−1, 1282 cm−1 , and 1892 cm−1 through the excitation spectra of Eu3+ and Tb3+ ions. The multiphonon relaxation rate (Wmp) was estimated for each phonon sideband and compared with previously reported results. Intensity parameters (Ωλ) were determined by the Judd–Ofelt theory and their values were used to evaluate the radiative transition of Eu3+ ions in ZNB glass, such as calculated lifetime (τcal), transition probability rate (A), effective line width (Δλeff), stimulated emission cross-section (σp), and branching ratio (βR). Eu3+/Tb3+ co-doped in ZNB glass exhibited multicolor emissions and the energy transfer process between Tb3+ and Eu3+ ions was confirmed based on the analysis of excitation spectra and decay time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Cheng, C. Shen, L. Shen, W. Xiang, and X. Liang, Tb3+, Eu3+ Co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs. ACS Appl. Mater. Interfaces 10, 21434 (2018).

    Article  CAS  Google Scholar 

  2. C.M. da Silva, L.A. Bueno, and A.S. Gouveia-Neto, Er3+ /Sm3+ - and Tb3+ /Sm3+ -doped glass phosphors for application in warm white light-emitting diode. J. Non-Cryst. Solids 410, 151–154 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.08.054.

    Article  CAS  Google Scholar 

  3. H. Guo, F. Li, R. Wei, H. Zhang, C. Ma, and J. Ballato, Elaboration and luminescent properties of Eu/Tb co-doped GdPO4-based glass ceramics for white LEDs. J. Am. Ceram. Soc. 95, 1178 (2012).

    Article  CAS  Google Scholar 

  4. X. Zhang, J. Wang, L. Huang, F. Pan, Y. Chen, B. Lei, M. Peng, and M. Wu, Tunable luminescent properties and concentration-dependent, site-preferable distribution of Eu2+ ions in silicate glass for white LEDs applications. ACS Appl. Mater. Interfaces 7, 10044 (2015).

    Article  CAS  Google Scholar 

  5. J.-Y. Jung, Luminescent color-adjustable europium and terbium co-doped strontium molybdate phosphors synthesized at room temperature applied to flexible composite for LED filter. Crystals 12, 552 (2022).

    Article  CAS  Google Scholar 

  6. C. Zhu, S. Chaussedent, S. Liu, Y. Zhang, A. Monteil, N. Gaumer, and Y. Yue, Composition dependence of luminescence of Eu and Eu/Tb doped silicate glasses for LED applications. J. Alloys Compd. 555, 232 (2013).

    Article  CAS  Google Scholar 

  7. U. Caldiño, A. Speghini, S. Berneschi, M. Bettinelli, M. Brenci, E. Pasquini, S. Pelli, and G.C. Righini, Optical spectroscopy and optical waveguide fabrication in Eu3+ and Eu3+/Tb3+ doped zinc–sodium–aluminosilicate glasses. J. Lumin. 147, 336 (2014).

    Article  Google Scholar 

  8. S. Zhao, F. Xin, S. Xu, D. Deng, L. Huang, H. Wang, and Y. Hua, Luminescence properties and energy transfer of Eu/Tb ions codoped aluminoborosilicate glasses. J. Non-Cryst. Solids 357, 2424 (2011).

    Article  CAS  Google Scholar 

  9. U. Caldiño, E. Álvarez, A. Speghini, and M. Bettinelli, New greenish-yellow and yellowish-green emitting glass phosphors: Tb3+/Eu3+ and Ce3+/Tb3+/Eu3+ in zinc phosphate glasses. J. Lumin. 135, 216 (2013).

    Article  Google Scholar 

  10. S.B. Adamu, M.K. Halimah, K.T. Chan, F.D. Muhammad, S.N. Nazrin, and R.A. Tafida, Eu3+ ions doped zinc borotellurite glass system for white light laser application: structural, physical, optical properties, and Judd–Ofelt theory. J. Lumin. 250, 119099 (2022).

    Article  CAS  Google Scholar 

  11. R. El-Mallawany, Y.S. Rammah, A.E. Adawy, and Z. Wasses, Optical and thermal properties of some tellurite glasses. Am. J. Opt. Photon. 5, 11 (2017).

    Article  Google Scholar 

  12. N. Soga, K. Hirao, M. Yoshimoto, and H. Yamamoto, Effects of densification on fluorescence spectra and glass structure of Eu3+-doped borate glasses. J. Appl. Phys. 63, 4451 (1988).

    Article  CAS  Google Scholar 

  13. S.M. Kaczmarek, Li2B4O7 glasses doped with Cr Co. Eu and Dy. Opt. Mater. 19, 189 (2002).

    Article  Google Scholar 

  14. N.L. Amiar Rodin, and M.R. Sahar, Erbium doped sodium magnesium boro-tellurite glass: stability and Judd–Ofelt analysis. Mater. Chem. Phys. 216, 177 (2018).

    Article  CAS  Google Scholar 

  15. M.A. Farag, A. Ibrahim, M.Y. Hassaan, and R.M. Ramadan, Enhancement of structural and optical properties of transparent sodium zinc phosphate glass–ceramics nano composite. J. Aust. Ceram. Soc. 58, 653 (2022).

    Article  CAS  Google Scholar 

  16. V.P. Tuyen, V.X. Quang, P. Van Do, L.D. Thanh, N.X. Ca, V.X. Hoa, L. van Tuat, L.A. Thi, and M. Nogami, An in-depth study of the Judd–Ofelt analysis, spectroscopic properties and energy transfer of Dy3+ in alumino-lithium-telluroborate glasses. J. Lumin. 210, 435 (2019).

    Article  CAS  Google Scholar 

  17. Y. Dwivedi, A. Bahadur, and S.B. Rai, Spectroscopic study of Sm: Ce ions co-doped in barium fluoroborate glass. J. Non-Cryst. Solids 356, 1650 (2010).

    Article  CAS  Google Scholar 

  18. D. Van Phan, V.X. Quang, H. Van Tuyen, T. Ngoc, V.P. Tuyen, L.D. Thanh, N.X. Ca, and N.T. Hien, Structure, optical properties and energy transfer in potassium-alumino-borotellurite glasses doped with Eu3+ ions. J. Lumin. 216, 116748 (2019).

    Article  Google Scholar 

  19. V.X. Quang, P. Van Do, N.X. Ca, L.D. Thanh, V.P. Tuyen, P.M. Tan, V.X. Hoa, and N.T. Hien, Role of modifier ion radius in luminescence enhancement from 5D4 level of Tb3+ ion doped alkali-alumino-telluroborate glasses. J. Lumin. 221, 117039 (2020).

    Article  CAS  Google Scholar 

  20. S. Kaur, P. Kaur, G.P. Singh, D. Arora, S. Kumar, and D.P. Singh, White light emission of Ce3+ sensitized Sm3+ doped lead alumino borate glasses. J. Lumin. 180, 190 (2016).

    Article  CAS  Google Scholar 

  21. Q. Chen, N. Dai, Z. Liu, Y. Chu, B. Ye, H. Li, J. Peng, Z. Jiang, J. Li, F. Wang, and L. Yang, White light luminous properties and energy transfer mechanism of rare earth ions in Ce3+/Tb3+/Sm3+ co-doped glasses. Appl. Phys. A 115, 1159 (2013).

    Article  Google Scholar 

  22. A.D. Sontakke, A. Tarafder, K. Biswas, and K. Annapurna, Sensitized red luminescence from Bi3+ co-doped Eu3+: ZnO-B2O3 glasses. Phys. B Condens. Matter 404, 3525 (2009).

    Article  CAS  Google Scholar 

  23. Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor. J. Appl. Phys. 109, 053511 (2011).

    Article  Google Scholar 

  24. S. Arunkumar, K. Venkata Krishnaiah, and K. Marimuthu, Structural and luminescence behavior of lead fluoroborate glasses containing Eu3+ ions. Phys. B Condens. Matter 416, 88 (2013).

    Article  CAS  Google Scholar 

  25. S. Nayab Rasool, L. Rama Moorthy, and C. Kulala Jayasankar, Optical and luminescence properties of Eu3+-doped phosphate based glasses. Mater. Express 3, 231 (2013).

    Article  Google Scholar 

  26. S. Rada, M. Culea, and E. Culea, Structure of TeO2·B2O3 glasses inferred from infrared spectroscopy and DFT calculations. J. Non-Cryst. Solids 354, 5491 (2008).

    Article  CAS  Google Scholar 

  27. Y. Yang, B. Chen, C. Wang, H. Zhong, L. Cheng, J. Sun, Y. Peng, and X. Zhang, Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O-ZnO-B2O3-TeO2 glasses. Opt. Mater. 31, 445 (2008).

    Article  CAS  Google Scholar 

  28. R. Ciceo-Lucacel and I. Ardelean, FT-IR and Raman study of silver lead borate-based glasses. J. Non-Cryst. Solids 353(18–21), 2020–2024 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.01.066.

    Article  CAS  Google Scholar 

  29. K. Selvaraju, K. Marimuthu, T.K. Seshagiri, and S.V. Godbole, Thermal, structural and spectroscopic investigations on Eu3+ doped boro-tellurite glasses. Mater. Chem. Phys. 131, 204 (2011).

    Article  CAS  Google Scholar 

  30. T. Miyakawa and D.L. Dexter, Phonon side bands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between Ions in solids. Phys. Rev. B 1, 2961 (1970).

    Article  Google Scholar 

  31. P. Manasa and C.K. Jayasankar, Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses. Opt. Mater. 62, 139 (2016).

    Article  CAS  Google Scholar 

  32. S.K.J.S. Gopi, A. George, N.V. Unnikrishnan, C. Joseph, and P.R. Biju, Luminescence and phonon side band analysis of Eu3+ doped alkali fluoroborate glasses for red emission applications. J. Mater. Sci. Mater. Electron. 29, 674 (2017).

    Article  Google Scholar 

  33. S. Georgescu, A. Enachi, and O. Toma, Phonon side bands of Eu3+ in BaGd2ZnO5. J. Lumin. 228, 117597 (2020).

    Article  CAS  Google Scholar 

  34. S. Fujihara and K. Tokumo, Multiband orange-red luminescence of Eu3+ ions based on the pyrochlore-structured host crystal. Chem. Mater. 17, 5587 (2005).

    Article  CAS  Google Scholar 

  35. K. Binnemans, Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1 (2015).

    Article  CAS  Google Scholar 

  36. D. Uma Maheswari, J. Suresh Kumar, L.R. Moorthy, K. Jang, and M. Jayasimhadri, Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses. Phys. B Condens. Matter 403(10–11), 1690–1694 (2008). https://doi.org/10.1016/j.physb.2007.09.089.

    Article  CAS  Google Scholar 

  37. B.D.P. Raju and C.M. Reddy, Structural and optical investigations of Eu3+ ions in lead containing alkali fluoroborate glasses. Opt. Mater. 34, 1251 (2012).

    Article  Google Scholar 

  38. M.S. Sajna, S. Gopi, V.P. Prakashan, M.S. Sanu, C. Joseph, P.R. Biju, and N.V. Unnikrishnan, Spectroscopic investigations and phonon side band analysis of Eu3+ -doped multicomponent tellurite glasses. Opt. Mater. 70, 31 (2017).

    Article  CAS  Google Scholar 

  39. K. Swapna, S.K. Mahamuda, A.S. Rao, T. Sasikala, P. Packiyaraj, L. RamaMoorthy, and G. VijayaPrakash, Luminescence characterization of Eu3+ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications. J. Lumin. 156, 80 (2014).

    Article  CAS  Google Scholar 

  40. N.T.Q. Lien, N.N. Trac, P.V. Do, and H.V. Tuyen, Judd–Ofelt analysis of Eu3+ and adjustable emission in Eu3+/Eu2+ co-doped sodium aluminosilicate glasses. J. Phys. Chem. Solids 164, 110637 (2022).

    Article  CAS  Google Scholar 

  41. R.F. Muniz, D. de Ligny, M. Sandrini, V.S. Zanuto, A.N. Medina, J.H. Rohling, N.B. Aranda, M.L. Baesso, and Y. Guyot, Fluorescence line narrowing and Judd–Ofelt theory analyses of Eu3+-doped low-silica calcium aluminosilicate glass and glass-ceramic. J. Lumin. 201, 123 (2018).

    Article  CAS  Google Scholar 

  42. M.R. Dousti, A.R. Molla, A.C.M. Rodrigues, and A.S.S. de Camargo, Eu3+ and Ce3+ co-doped aluminosilicate glasses and transparent glass-ceramics containing gahnite nanocrystals. Opt. Mater. 69, 372 (2017).

    Article  CAS  Google Scholar 

  43. B.M. Walsh, Judd–Ofelt theory: principles and practices, Advances in Spectroscopy for Lasers and Sensing. ed. B. Di Bartolo, and O. Forte (Dordrecht: Springer Netherlands, 2006), pp. 403–433. https://doi.org/10.1007/1-4020-4789-4_21.

    Chapter  Google Scholar 

  44. A.K. Parchur and R.S. Ningthoujam, Behaviour of electric and magnetic dipole transitions of Eu3+, 5D07F0 and Eu-O charge transfer band in Li+ co-doped YPO4:Eu3+. RSC Adv. 2, 10859 (2012).

    Article  CAS  Google Scholar 

  45. H. Van Tuyen, D.T. Tien, N.M. Son, and D. Van Phan, Judd–Ofelt parameters of Eu3+ and energy transfer of Ce3+/Eu3+ in Sr2Al2SiO7 materials. J. Electron. Mater. 48, 7799 (2019).

    Article  Google Scholar 

  46. J.A. Capobianco, P.P. Proulx, M. Bettinelli, and F. Negrisolo, Absorption and emission spectroscopy of Eu3+ in metaphosphate glasses. Phys. Rev. B Condens. Matter 42, 5936 (1990).

    Article  CAS  Google Scholar 

  47. B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962).

    Article  CAS  Google Scholar 

  48. G.S. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962).

    Article  CAS  Google Scholar 

  49. B. Deva Prasad Raju and C. Madhukar Reddy, Structural and optical investigations of Eu3+ ions in lead containing alkali fluoroborate glasses. Opt. Mater. 34, 1251 (2012).

    Article  CAS  Google Scholar 

  50. W. Luo, J. Liao, R. Li, and X. Chen, Determination of Judd–Ofelt intensity parameters from the excitation spectra for rare-earth doped luminescent materials. Phys. Chem. Chem. Phys. 12, 3276 (2010).

    Article  CAS  Google Scholar 

  51. S. Dutta, S. Som, and S.K. Sharma, Excitation spectra and luminescence decay analysis of K+ compensated Dy3+ doped CaMoO4 phosphors. RSC Adv. 5, 7380 (2015).

    Article  CAS  Google Scholar 

  52. A. Ciric, L. Marciniak, and M.D. Dramicanin, Self-referenced method for the Judd–Ofelt parametrisation of the Eu3+ excitation spectrum. Sci. Rep. 12, 563 (2022).

    Article  CAS  Google Scholar 

  53. C. Yu, B. Chen, X. Zhang, X. Li, J. Zhang, S. Xu, H. Yu, J. Sun, Y. Cao, and H. Xia, Influence of Er3+ concentration and Ln3+ on the Judd–Ofelt parameters in LnOCl (Ln = Y, La, Gd) phosphors. Phys. Chem. Chem. Phys. 22, 7844 (2020).

    Article  CAS  Google Scholar 

  54. W.T. Carnall, P.R. Fields, and K. Rajnak, Electronic energy levels of the trivalent lanthanide Aquo ions. IV. Eu3+. J. Chem. Phys. 49, 4450 (1968).

    Article  CAS  Google Scholar 

  55. K. Maheshvaran and K. Marimuthu, Concentration dependent Eu3+ doped boro-tellurite glasses—Structural and optical investigations. J. Lumin. 132, 2259 (2012).

    Article  CAS  Google Scholar 

  56. A.M. Babu, B.C. Jamalaiah, T. Suhasini, T.S. Rao, and L.R. Moorthy, Optical properties of Eu3+ions in lead tungstate tellurite glasses. Solid State Sci. 13, 574 (2011).

    Article  CAS  Google Scholar 

  57. B.C. Jamalaiah, J.S. Kumar, A.M. Babu, and L.R. Moorthy, Spectroscopic studies of Eu3+ ions in LBTAF glasses. J. Alloys Compd. 478, 63 (2009).

    Article  CAS  Google Scholar 

  58. M.D. Naidu, D. Rajesh, A. Balakrishna, and Y.C. Ratnakaram, Kinetics of fluorescence properties of Eu3+ ion in strontium-aluminium-bismuth-borate glasses. J. Rare Earth 32, 1140 (2014).

    Article  CAS  Google Scholar 

  59. I.I. Kindrat and B.V. Padlyak, Luminescence properties and quantum efficiency of the Eu-doped borate glasses. Opt. Mater. 77, 93 (2018).

    Article  CAS  Google Scholar 

  60. N. Kiran, Eu3+ ion doped sodium–lead borophosphate glasses for red light emission. J. Mol. Struct. 1065–1066, 93 (2014).

    Article  Google Scholar 

  61. G.R. Dillip, C.M. Reddy, M. Rajesh, S. Chaurasia, B.D.P. Raju, and S.W. Joo, Green fluorescence of terbium ions in lithium fluoroborate glasses for fibre lasers and display devices. Bull. Mater. Sci. 39, 711–717 (2016).

    Article  CAS  Google Scholar 

  62. P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguiló, and F. Díaz, Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory. Opt. Mater. 78, 495 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Thai An.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lien, N.T.Q., An, N.T.T., Tam, N.M. et al. Phonon Sideband and Intensity Parameter Analysis of Eu3+/Tb3+-Doped Zinc Sodium Borotellurite Glasses for Multicolor Emission. J. Electron. Mater. 52, 6052–6061 (2023). https://doi.org/10.1007/s11664-023-10545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10545-0

Keywords

Navigation