Skip to main content
Log in

Structural, dielectric, and electrical characteristics of selenium-modified BiFeO3–(BaSr)TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The selenium (Se)-modified 0.5BiFeO3–0.5(BaSr)TiO3 was synthesized employing a high-temperature solid-state technique. Structural analysis (through Rietveld refinement) of the room-temperature X-ray diffraction pattern and data of the material confirms the tetragonal (P4mm) symmetry of the compound. Studies of scanning electron micrograph (SEM) and energy dispersive X-ray spectroscopy (EDS) data reveal the nature and characteristics (i.e., size, shape and distribution of grains, grain boundaries, voids and presence of elements, etc.,) of surface morphology and structure of the compound. Detailed analysis of temperature and frequency dependence of dielectric and impedance data exhibits the relaxor type of ferroelectric behavior and semiconductor (negative temperature coefficient of resistance) nature of the material. The material is found to have high resistivity and low dielectric (tangent) loss. Study of the temperature dependence of leakage current characteristics (i.e., electric field dependent current density) shows the leaky behavior of the material. The Se-modified 0.5BiFeO3–0.5(BaSr)TiO3 (BFBST), compared to its components (BFBST and pure BiFeO3), material possesses different types of conduction process, like space charge limited (SCLC), Ohmic, Hopping type. Poole–Frenkel emission (PFE) and Schottky emission (SE) fitted data give an evidence/idea about the bulk-limited and interface-limited conduction mechanism present in the system. The energy gap values (Eg) of Se substituted BFBST and BiFeO3 are found to be 0.55 eV and 0.78 eV, respectively, in the low-temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.A. Hill, J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  CAS  Google Scholar 

  2. G.A. Smolenskii, V. Isupov, A. Agranovskaya, N. Kranik, Sov. Phys. Solid State 2, 2651–2654 (1961)

    Google Scholar 

  3. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C 13, 1931–1940 (1980)

    Article  CAS  Google Scholar 

  4. M. Luo, S.P. Lin, Y. Zheng, B. Wang, Appl. Phys. Lett. 101, 062902 (2012). https://doi.org/10.1063/1.4742897

    Article  CAS  Google Scholar 

  5. M.R. Suchomel, P.K. Daviesa, J. Appl. Phys. 96(8), 4405–4410 (2004). https://doi.org/10.1063/1.1789267

    Article  CAS  Google Scholar 

  6. H.N. Lee, H.M. Christen, M.F. Chisholm, C.M. Rouleau, D.H. Lowndes, Nature 433(7027), 395–399 (2005)

    Article  CAS  Google Scholar 

  7. P. Wu, X. Ma, Y. Li, V. Gopalan, L.Q. Chen, Appl. Phys. Lett. 100, 092905-4 (2012). https://doi.org/10.1063/1.3691172

    Article  CAS  Google Scholar 

  8. W.M. Zhu, H.Y. Guo, Z.-G. Ye, Phys Rev B: Condens. Mater. Phys. 78(1), 014401 (2008). https://doi.org/10.1103/PhysRevB.78.014401

    Article  CAS  Google Scholar 

  9. H.L.W. Chan, M.C. Cheung, C.L. Choy, Study on BaTiO3/P(VDF-TrFE) 0–3 composites. Ferroelectrics 224(1), 113–120 (1999). https://doi.org/10.1080/00150199908210557

    Article  Google Scholar 

  10. Y. Bai, Z.-Y. Cheng, V. Bharti, H.S. Xu, Q.M. Zhang, Appl. Phys. Lett. 76(25), 3804–3806 (2000). https://doi.org/10.1063/1.126787

    Article  CAS  Google Scholar 

  11. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115(5), 217–220 (2000). https://doi.org/10.1016/S0038-1098(00)00182-4

    Article  CAS  Google Scholar 

  12. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Ceram. Int. 38, 3829–3834 (2012)

    Article  CAS  Google Scholar 

  13. F. Suhua, X. Xie, F. Zhang, X. Guo, S. Yang, L. Zhang, J. Mater. Sci.: Mater. Electron. 27, 6854–6858 (2016)

    Google Scholar 

  14. L.Y. Wang, D.H. Wang, H.B. Huang, Z.D. Han, Q.Q. Cao, B.X. Gu, Y.W. Du, J. Alloys Compd. 46, 1–3 (2009)

    CAS  Google Scholar 

  15. M.R. Islam, M.S. Islam, M.A. Zubair, H.M. Usama, M.S. Azam, A. Sharif, J. Alloy. Compd. 735, 2584–2596 (2018). https://doi.org/10.1016/j.jallcom.2017.11.323

    Article  CAS  Google Scholar 

  16. M. Basith, A. Billah, M. Jalil, N. Yesmin, M.A. Sakib, E.K. Ashik, S.E.H. Yousuf, S.S. Chowdhury, M.S. Hossain, S.H. Firoz, J. Alloy. Compd. 694, 792–799 (2017)

    Article  CAS  Google Scholar 

  17. M. Rangi, A. Agarwal, S. Sanghi, R. Singh, S. Meena, A. Das, AIP Adv. 4(8), 087121 (2014)

    Article  Google Scholar 

  18. S. Godara, B. Kumar, Ceram. Int. 41(5), 6912–6919 (2015)

    Article  CAS  Google Scholar 

  19. R. Das, S. Sharma, K. Mandal, J. Magn. Magn. Mater. 401, 129–137 (2016)

    Article  CAS  Google Scholar 

  20. M. Pastora, P.K. Bajpaia, R.N.P. Choudhary, J. Phys. Chem. Solids 68, 1914–1920 (2007). https://doi.org/10.1016/j.jpcs.2007.05.024

    Article  CAS  Google Scholar 

  21. S. Sahoo, R.N.P Choudhary and B.K Mathur, AIP Conf. Proc. https://doi.org/10.1063/1.3027175

  22. S.O. Leontsevw, R.E. Eitel, J. Am. Ceram. Soc. 92(12), 2957–2961 (2009). https://doi.org/10.1111/j.1551-2916.2009.03313.x

    Article  CAS  Google Scholar 

  23. L.F. Zhu, B.P. Zhang, Z.C. Zhang, S. Li, L.J. Wang, L.J. Zheng, J. Mater. Sci. Mater. Electron. 29, 2307–2315 (2018). https://doi.org/10.1007/s10854-017-8147-0

    Article  CAS  Google Scholar 

  24. B. Mohanty, B.N. Parida, R.K. Parida, J. Mater. Sci. Mater. Electron. 30(2), 1–8 (2019). https://doi.org/10.1007/s10854-019-01250-y

    Article  CAS  Google Scholar 

  25. P. Murugavel, J.-H. Lee, J.Y. Jo, H.Y. Sim, J.-S. Chung, Y. Jo, M.-H. Jung, J. Phys. Condens. Matter 20, 415208 (2008). https://doi.org/10.1088/0953-8984/20/41/415208. (6 pp)

    Article  CAS  Google Scholar 

  26. Y. Wei, C. Jin, Y. Zeng, X. Wang, D. Gao, X. Wang, Ceram. Int. 43(12), 17220–17224 (2017). https://doi.org/10.1016/j.ceramint.2017.09.030

    Article  CAS  Google Scholar 

  27. W. Cai, S. Zhong, C. Fu, G. Chen, X. Deng, Mater. Res. Bull. 50, 259–267 (2014). https://doi.org/10.1016/j.materresbull.2013.11.029

    Article  CAS  Google Scholar 

  28. S. Rizwan, M. Umar, Z.U.D. Babar, S.U. Awan, M.A.U. Rehman, AIP Adv. 9, 055025 (2019). https://doi.org/10.1063/1.5095468

    Article  CAS  Google Scholar 

  29. Z. Al-Shadidi, I.H. Khdayer, J Mater Chem Technol 2(2), 56–63 (2014)

    CAS  Google Scholar 

  30. L.H. Gaabour, J Mater Res Technol (2020). https://doi.org/10.1016/j.jmrt.2020.02.057

    Article  Google Scholar 

  31. R. Shekhawat, R. Rangappa, R. Karuppannan, AIP Conf. Proc. 1953(1), 090086 (2018). https://doi.org/10.1063/1.5032933

    Article  CAS  Google Scholar 

  32. R. Singh, B. Suthar, A. Bhargava, AIP Conf. Proc. (1953). https://doi.org/10.1063/1.5032759

    Article  Google Scholar 

  33. A.S. Hassanien, A.A. Akl, Super-latt. Microstruct. 89, 153–169 (2016). https://doi.org/10.1016/j.spmi.2015.10.044

    Article  CAS  Google Scholar 

  34. X.-N. Cao, S. Lian, Y. Tong, W. Lin, L. Jia, Y. Fanga, X. Wang, Chem. Commun. (2019). https://doi.org/10.1039/c9cc08665js

    Article  Google Scholar 

  35. C. Zhang, H. Tao, Y. Dai, X. He, K. Hang, Progress Nat. Sci. Mater. Int. 24, 671–675 (2014). https://doi.org/10.1016/j.pnsc.2014.10.012

    Article  CAS  Google Scholar 

  36. F.-R. Yang, Y. Li, X.-H. Zhang, M. Wang, H.-R. Guo, W.-J. Ruan, Bioorg. Med. Chem. Lett. 25, 3592–3596 (2015). https://doi.org/10.1016/j.bmcl.2015.06.075

    Article  CAS  Google Scholar 

  37. X. Liu, S. Xu, X. Ding, D. Yue, J. Bian, X. Zhang, G. Zhang, P. Gao, Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.10.078

    Article  Google Scholar 

  38. S. Sharma, V. Singh, A. Anshul, J.M. Siqueiros, R.K. Dwivedi, J. Appl. Phys. 123, 204102 (2018). https://doi.org/10.1063/1.5023682

    Article  CAS  Google Scholar 

  39. J. Pala, S. Kumara, L. Singha, M. Singha, A. Singh, J. Magn. Magn. Mater. 441, 339–347 (2017). https://doi.org/10.1016/j.jmmm.2017.05.047

    Article  CAS  Google Scholar 

  40. A. Singh, C. Moriyoshi, Y. Kuroiwa, D. Pandey, Phys. Rev. B 88, 024113 (2013). https://doi.org/10.1103/PhysRevB.88.024113

    Article  CAS  Google Scholar 

  41. R. Mouta, R.X. Silva, C.W.A. Paschoal, Acta Cryst. B69, 439–445 (2013). https://doi.org/10.1107/S2052519213020514

    Article  CAS  Google Scholar 

  42. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  43. Y.Q. Jia, J. Solid State Chem. 95, 184–187 (1991)

    Article  CAS  Google Scholar 

  44. P. Debye, W. Ramm, Ann. Phys. 28, 28–34 (1937). https://doi.org/10.1002/andp.19364200107

    Article  CAS  Google Scholar 

  45. K.S. Cole, R.H. Cole, J. Chem. Phys. 9(4), 341–351 (1941). https://doi.org/10.1063/1.1750906

    Article  CAS  Google Scholar 

  46. M. Trainer, Eur. J. Phys. 21, 459–464 (2000)

    Article  CAS  Google Scholar 

  47. L.E. Cross, Ferroelectrics 76(1), 241–267 (2011). https://doi.org/10.1080/00150198708016945

    Article  Google Scholar 

  48. C.W. Ahn, J. Korean Phys. Soc. 68(12), 1481–1494 (2016). https://doi.org/10.3938/jkps.68.1481

    Article  CAS  Google Scholar 

  49. M. Wu, L. Fang, L. Liu, X. Zhou, Y. Huang, Y. Li, Mater. Chem. Phys. 132(2–3), 1015–1018 (2012)

    Article  CAS  Google Scholar 

  50. C. Mao, X. Dong, G. Wang, S. Cao, C. Yao, K. Uchino, J. Am. Ceram. Soc. 93(12), 4011–4014 (2010). https://doi.org/10.1111/j.1551-2916.2010.04224.x

    Article  CAS  Google Scholar 

  51. K. Auromun, R.N.P. Choudhary, Structural. Ceram. Int. 45, 20762–20773 (2019). https://doi.org/10.1016/j.ceramint.2019.07.062

    Article  CAS  Google Scholar 

  52. J. Kuwata, K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 21, 1298–1302 (1982). https://doi.org/10.1143/JJAP.21.1298

    Article  CAS  Google Scholar 

  53. D.P. Almond, A.R. West, Solid State Ionics 11(1), 57–64 (1983)

    Article  CAS  Google Scholar 

  54. S.K. Rout, A. Hussian, J.S. Lee, I.W. Kim, S.I. Woo, J. Alloy. Compd. 477(1), 706–711 (2009). https://doi.org/10.1016/j.jallcom.2008.10.125

    Article  CAS  Google Scholar 

  55. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, J. Phys. D: Appl. Phys. 49, 035302 (2016). https://doi.org/10.1088/0022-3727/49/3/035302

    Article  CAS  Google Scholar 

  56. S.Q. Jan, M. Usman, M.N.-U. Haq, A. Mumtaz, J. Alloys Compd. 735, 1893–1900 (2017). https://doi.org/10.1016/j.jallcom.2017.11.275/e2004-00357-8

    Article  Google Scholar 

  57. A.K. Tagantsev, Vogel-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics. Phys. Rev. Lett. 72, 1100–1103 (1994). https://doi.org/10.1103/PhysRevLett.72.1100

    Article  CAS  Google Scholar 

  58. I.O. Troyanchuk, S.V. Trukhanov, D.D. Khalyavin, H. Szymczak, J. Magn. Magn. Mater. 208, 217–220 (2000). https://doi.org/10.1016/S0304-8853(99)00529-6

    Article  CAS  Google Scholar 

  59. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasil’ev, A. Maignan, H. Szymczak, JETP Lett. 85, 507–512 (2007). https://doi.org/10.1134/S0021364007100086

    Article  CAS  Google Scholar 

  60. S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, H. Szymczak, JETP 95, 308–315 (2002). https://doi.org/10.1134/1.1506439

    Article  CAS  Google Scholar 

  61. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Tyoyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Eur. Phys. J. B 42, 51–61 (2004). https://doi.org/10.1140/epjb/e2004-00357-8

    Article  CAS  Google Scholar 

  62. L. Cai, R. Pattnaik, J. Lundeen, J. Toulouse, Phys. Rev. B 98, 134113-12 (2018). https://doi.org/10.1103/PhysRevB.98.134113

    Article  Google Scholar 

  63. J. Macutkevic, J. Banys, A. Bussmann-Holder, A.R. Bishop, Phys. Rev. B 83(18), 184301–184306 (2011). https://doi.org/10.1103/physrevb.83.184301s

    Article  Google Scholar 

  64. K. Prabakar, S.P. Mallikarjun Rao, J. Alloys Compd. 437(1–2), 302–310 (2007). https://doi.org/10.1016/j.jallcom.2006.07.108

    Article  CAS  Google Scholar 

  65. R. Das, R.N.P. Choudhary, Solid State Sci. 87, 1–8 (2019). https://doi.org/10.1016/j.solidstatesciences.2018.10.020

    Article  CAS  Google Scholar 

  66. A. Satapathy, E. Sinha, B.K. Sonu, S.K. Rout, J. Alloy. Compd. 811, 152042–152048 (2019). https://doi.org/10.1016/j.jallcom.2019.152042

    Article  CAS  Google Scholar 

  67. A. Dutta, C. Bharti, T.P. Sinha, Indian J. Eng. Mater. Sci. 15(2), 181–186 (2008)

    CAS  Google Scholar 

  68. A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C. Vall’ee, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, J. Phys. D Appl. Phys. 46, 065308 (2013). https://doi.org/10.1088/0022-3727/46/6/065308. (7 pp)

    Article  CAS  Google Scholar 

  69. A. Rouahi, A. Kahouli, A. Sylvestre, B. Yangui, J. Alloys Compd. 529, 84–88 (2012). https://doi.org/10.1016/j.jallcom.2012.02.137

    Article  CAS  Google Scholar 

  70. S. Pattanayak, R.N.P. Choudhary, Ceram. Int. 41(8), 9403–9410 (2015). https://doi.org/10.1016/j.ceramint.2015.03.318

    Article  CAS  Google Scholar 

  71. N. Jiang, M. Tian, L. Lue, Q. Zheng, D. Lin, J. Electron. Mater. 45(1), 291–300 (2016). https://doi.org/10.1007/s11664-015-4062-4

    Article  CAS  Google Scholar 

  72. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  CAS  Google Scholar 

  73. K. Jena, S. Satapathy, J. Mohanty, Phys. Chem. Chem. Phys. 21, 15854–15860 (2019). https://doi.org/10.1039/c9cp02528f

    Article  CAS  Google Scholar 

  74. S.T. Chang, J.Y. Lee, Appl. Phys. Lett. 80(4), 655–657 (2012). https://doi.org/10.1063/1.1436527

    Article  CAS  Google Scholar 

  75. F.-C. Chiu, Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/578168

    Article  Google Scholar 

  76. S. Sharma, M.P. Cruz, J.M. Siqueiros, O. Raymond Herrera, V.E. Alvarez, R.K. Dwivedi, J. Mater. Sci. Mater. Electron. 30(8), 7447–7459 (2019). https://doi.org/10.1007/s10854-019-01058-w

    Article  CAS  Google Scholar 

  77. Y. Zhang, Z. Chen, W. Cao, Z. Zhang, Appl. Phys. Lett. 111(1–4), 172902 (2017). https://doi.org/10.1063/1.4998187

    Article  CAS  Google Scholar 

  78. Y. Zhang, P. Qiu, Y. Pan, J. Lin, F. Wang, Y. Tang, X. He, D. Sun, J. Mater. Sci. Eng. A 6(9–10), 270–276 (2016). https://doi.org/10.17265/2161-6213/2016.9-10.005

    Article  CAS  Google Scholar 

  79. Z. Yao, C. Xu, H. Liu, H. Hao, M. Cao, Z. Wang, Z. Song, W. Hu, A. Ullah, J. Mater. Sci. Mater. Electron. 25, 4975–4982 (2014). https://doi.org/10.1007/s10854-014-2260-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Auromun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auromun, K., Choudhary, R.N.P. Structural, dielectric, and electrical characteristics of selenium-modified BiFeO3–(BaSr)TiO3 ceramics. J Mater Sci: Mater Electron 31, 13415–13433 (2020). https://doi.org/10.1007/s10854-020-03896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03896-5

Navigation