Skip to main content
Log in

Chitosan-capped Ag–Au/rGO nanohybrids as promising enzymatic amperometric glucose biosensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile one-pot method was used to fabricate highly dispersed silver and gold nanoparticles attached to the surface of reduced graphene oxide (Ag–Au/rGO) nanohybrids via in situ incorporation of metal ions and chitosan-induced reduction. Chitosan species have a dual function in the synthesis route where they simultaneously stabilize the rGO nanosheets, furthermore Ag and Au nanoparticles nucleation as well as its reducing function. The crystal structure and morphology of the as-synthesized samples have been characterized, revealing the formation of spherical Ag and Au nanoparticles with FCC crystal structure attached to the surface of rGO nanosheets. The as-synthesized nanocomposites have shown a linear response for glucose sensing in the range from 0.25 to 25 mM with a detection limit close to 53 µM. This gluco-sensor exhibited high performance in detecting the released current in the human serum. Therefore, the results open a new route of using Ag–Au/RGO nanohybrids as a promising electrochemical biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Nesaei, Y. Song, Y. Wang, X. Ruan, D. Du, A. Gozen, Y. Lin, Micro additive manufacturing of glucose biosensors: a feasibility study. Anal. Chim. Acta. 1043, 142–149 (2018)

    Article  CAS  Google Scholar 

  2. F. Boussema, A.J. Gross, F. Hmida, B. Ayed, H. Majdoub, S. Cosnier, A. Maaref, M. Holzinger, Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. Biosens. Bioelectron. 109, 20–26 (2018)

    Article  CAS  Google Scholar 

  3. T. Bobrowski, W. Schuhmann, Long-term implantable glucose biosensors. Curr. Opin. Electrochem. 10, 112–119 (2018)

    Article  CAS  Google Scholar 

  4. A. Jędrzak, T. Rębiś, Ł. Klapiszewski, J. Zdarta, G. Milczarek, T. Jesionowski, Carbon paste electrode based on functional GOx/silica-lignin system to prepare an amperometric glucose biosensor. Sensors Actuators B Chem. 256, 176–185 (2018)

    Article  Google Scholar 

  5. A. Kausaite-Minkstimiene, L. Glumbokaite, A. Ramanaviciene, E. Dauksaite, A. Ramanavicius, An amperometric glucose biosensor based on poly (pyrrole-2-carboxylic acid)/glucose oxidase biocomposite. Electroanalysis 30, 1642–1652 (2018)

    Article  Google Scholar 

  6. E.-S. Paik, Y.-R. Kim, H.-G. Hong, Amperometric glucose biosensor utilizing zinc oxide-chitosan-glucose oxidase hybrid composite films on electrodeposited Pt-Fe (III). Anal. Sci. 34, 1271–1276 (2018)

    Article  CAS  Google Scholar 

  7. S. Kadian, B.D. Arya, S. Kumar, S.N. Sharma, R.P. Chauhan, A. Srivastava, P. Chandra, S.P. Singh, Synthesis and application of PHT-TiO2 nanohybrid for amperometric glucose detection in human saliva sample. Electroanalysis 30, 2793–2802 (2018)

    Article  CAS  Google Scholar 

  8. J. Mohapatra, B. Ananthoju, V. Nair, A. Mitra, D. Bahadur, N.V. Medhekar, M. Aslam, Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Appl. Surf. Sci. 442, 332–341 (2018)

    Article  CAS  Google Scholar 

  9. K.S. Bhat, R. Ahmad, J.-Y. Yoo, Y.-B. Hahn, Fully nozzle-jet printed non-enzymatic electrode for biosensing application. J. Coll. Interface Sci. 512, 480–488 (2018)

    Article  CAS  Google Scholar 

  10. B. Sahin, T. Kaya, Electrochemical amperometric biosensor applications of nanostructured metal oxides: a review. Mater. Res. Express. (2018). https://doi.org/10.1088/2053-1591/aafa95

    Article  Google Scholar 

  11. P. Bollella, L. Gorton, Enzyme based amperometric biosensors. Curr. Opin. Electrochem. 10, 157–173 (2018)

    Article  CAS  Google Scholar 

  12. A. Sarkar, A.B. Ghosh, N. Saha, G.R. Bhadu, B. Adhikary, Newly designed amperometric biosensor for hydrogen peroxide and glucose based on vanadium sulfide nanoparticles. ACS Appl. Nano Mater. 1, 1339–1347 (2018)

    Article  CAS  Google Scholar 

  13. V. Vinoth, T.D. Shergilin, A.M. Asiri, J.J. Wu, S. Anandan, Facile synthesis of copper oxide microflowers for nonenzymatic glucose sensor applications. Mater. Sci. Semicond. Process. 82, 31–38 (2018)

    Article  CAS  Google Scholar 

  14. Z. Wei, H. Wang, Z. Ma, H. Han, Amperometric biosensor of matrix metalloproteinase-7 enhanced by pd-functionalized carbon nanocomposites. Nanoscale Res. Lett. 13, 375 (2018)

    Article  Google Scholar 

  15. S.H. Lee, B.-H. Jun, Silver Nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci. 20, 865 (2019)

    Article  CAS  Google Scholar 

  16. S. Kumar, M.M. Malik, R. Purohit, Synthesis of high surface area mesoporous silica materials using soft templating approach. Mater. Today Proc. 5, 4128–4133 (2018)

    Article  CAS  Google Scholar 

  17. L. Xu, J. Ma, N. Zhou, P. Guo, G. Wang, C. Su, Well-dispersed poly (m-phenylenediamine)/silver composite for non-enzymatic amperometric glucose sensor applied in a special alkaline environment. Ionics (Kiel). 24, 2795–2805 (2018)

    Article  CAS  Google Scholar 

  18. J.H. Han, H.W. Kang, W. Lee, Ultra-sensitive non-enzymatic amperometric glucose sensors based on silver nanowire/graphene hybrid three-dimensional nanostructures. Results Phys. 15, 102761 (2019)

    Article  Google Scholar 

  19. I. Rassas, M. Braiek, A. Bonhomme, F. Bessueille, G. Raffin, H. Majdoub, N. Jaffrezic-Renault, Highly sensitive voltammetric glucose biosensor based on glucose oxidase encapsulated in a chitosan/kappa-carrageenan/gold nanoparticle bionanocomposite. Sensors. 19, 154 (2019)

    Article  Google Scholar 

  20. S. Chatterjee, H.N. Tran, O.-B. Godfred, S.H. Woo, Supersorption capacity of anionic dye by newer chitosan hydrogel capsules via green surfactant exchange method. ACS Sustain. Chem. Eng. 6, 3604–3614 (2018)

    Article  CAS  Google Scholar 

  21. C. Sun, Y. Zou, D. Wang, Z. Geng, W. Xu, F. Liu, J. Cao, Construction of chitosan-Zn-based electrochemical biosensing platform for rapid and accurate assay of actin. Sensors. 18, 1865 (2018)

    Article  Google Scholar 

  22. A. Mobed, M. Hasanzadeh, P. Babaie, M. Aghazadeh, A. Mokhtarzadeh, M.A. Rezaee, Cetyltrimethyl ammonium bromide modified gold nanostructure supported by chitosan as a novel scaffold for immobilization of DNA and ultra-sensitive bioassay of legionella pneumophila, Microchem. J. (2019). https://doi.org/10.1016/j.microc.2019.05.061

    Article  Google Scholar 

  23. S.D. Gür, N. İdil, N. Aksöz, Optimization of enzyme co-immobilization with sodium alginate and glutaraldehyde-activated chitosan beads. Appl. Biochem. Biotechnol. 184, 538–552 (2018)

    Article  Google Scholar 

  24. I. Benucci, K. Liburdi, I. Cacciotti, C. Lombardelli, M. Zappino, F. Nanni, M. Esti, Chitosan/clay nanocomposite films as supports for enzyme immobilization: an innovative green approach for winemaking applications. Food Hydrocoll. 74, 124–131 (2018)

    Article  CAS  Google Scholar 

  25. M.F. Sanad, S.O. Abdellatif, H.A. Ghali, Enhancing the performance of photovoltaic operating under harsh conditions using carbon-nanotube thermoelectric harvesters. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02371-0

    Article  Google Scholar 

  26. M.F. Sanad, A.E. Shalan, S.M. Bazid, E.S.A. Serea, E.M. Hashem, S. Nabih, M.A. Ahsan, A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv. 9, 31021–31029 (2019)

    Article  CAS  Google Scholar 

  27. M.A. Worsley, T.T. Pham, A. Yan, S.J. Shin, J.R. Lee, M. Bagge-Hansen, W. Mickelson, A. Zettl, Synthesis and characterization of highly crystalline graphene aerogels. Acs Nano. 8, 11013–11022 (2014). https://doi.org/10.1021/nn505335u

    Article  CAS  Google Scholar 

  28. M. Jayachandran, Preparation and characterizations of graphene oxide and graphene NPs. J. Bio Pharma Res. 8, 2486–2490 (2019)

    Article  Google Scholar 

  29. C. Pothipor, N. Wiriyakun, T. Putnin, A. Ngamaroonchote, J. Jakmunee, K. Ounnunkad, R. Laocharoensuk, N. Aroonyadet, Highly sensitive biosensors based on graphene–poly (3-aminobenzoic acid) modified electrodes and porous-hollowed–silver–gold nanoparticle labelling for prostate cancer detection. Sensor. Actuat. B-Chem. (2019). https://doi.org/10.1016/j.snb.2019.126657

    Article  Google Scholar 

  30. C. Wang, M. Pan, H. Chen, D. Chen, Y. Chen, Novel glucose oxidase interlocked prussian blue/polysulfone stereo-structure and its application in amperometric glucose biosensor. Int. J. Electrochem. Sci. 14, 8014–8027 (2019)

    Article  CAS  Google Scholar 

  31. B.-W. Liu, Y.-Y. Wu, P.-C. Huang, F.-Y. Wu, Colorimetric determination of cytosine-rich ssDNA by silver (I)-modulated glucose oxidase-catalyzed growth of gold nanoparticles. Microchim. Acta. 186, 467 (2019)

    Article  Google Scholar 

  32. X. Ji, J. Ren, R. Ni, X. Liu, A stable and controllable Prussian blue layer electrodeposited on self-assembled monolayers for constructing highly sensitive glucose biosensor. Analyst. 135, 2092–2098 (2010)

    Article  CAS  Google Scholar 

  33. G. Darabdhara, B. Sharma, M.R. Das, R. Boukherroub, S. Szunerits, Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. Sens. Actu. B Chem. 238, 842–851 (2017)

    Article  CAS  Google Scholar 

  34. S. Chaiyo, E. Mehmeti, W. Siangproh, T.L. Hoang, H.P. Nguyen, O. Chailapakul, K. Kalcher, Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine–ionic liquid–graphene composite. Biosens. Bioelectron. 102, 113–120 (2018). https://doi.org/10.1016/j.bios.2017.11.015

    Article  CAS  Google Scholar 

  35. N. German, J. Voronovic, A. Ramanavicius, A. Ramanaviciene, Gold Nanoparticles and polypyrrole for glucose biosensor design. Procedia Eng. 47, 482–485 (2012). https://doi.org/10.1016/j.proeng.2012.09.189

    Article  CAS  Google Scholar 

  36. M.F. Sanad, E.S.A. Serea, S.M. Bazid, S. Nabih, M.A. Ahsan, A.E. Shalan, High cytotoxic activity of ZnO@ leucovorin nanocomposite based materials against an MCF-7 cell model. Anal. Methods 12(16), 2176–2184 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the British university together with modern academy for engineering and technology in Egypt

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimaa Nabih.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabih, S., Hassn, S.S. Chitosan-capped Ag–Au/rGO nanohybrids as promising enzymatic amperometric glucose biosensor. J Mater Sci: Mater Electron 31, 13352–13361 (2020). https://doi.org/10.1007/s10854-020-03889-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03889-4

Navigation