Skip to main content

Advertisement

Log in

Enhancing the performance of photovoltaic operating under harsh conditions using carbon-nanotube thermoelectric harvesters

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a novel configuration for enhancing the efficiency of photovoltaics (PV) operating in high-temperature environment using a nano-thermoelectric carbon nanotube-based harvester attached to the backside of the solar cell (SC). The attached harvester will not only extract heat energy from the cell but will also convert this wasted heat energy into electrical energy. The proposed configuration has been fabricated and tested experimentally, where I–V measurements have been conducted. An overall enhancement in SC efficiency of 50%, with respect to reference cell, has been achieved using the proposed harvester. In addition, the harvester itself provided a power in the range of hundreds of microwatts that can be utilized in various low-power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Razak, Y. Irwan, W. Leow, M. Irwanto, I. Safwati, M. Zhafarina, Investigation of the effect temperature on photovoltaic (PV) panel output performance. Int. J. Adv. Sci. Eng. Inf. Technol. 6, 682–688 (2016)

    Article  Google Scholar 

  2. E. Gouvêa, P. Sobrinho, T. Souza, Spectral response of polycrystalline silicon photovoltaic cells under real-use conditions. Energies 10, 1178 (2017)

    Article  Google Scholar 

  3. S. Abdellatif, K. Kirah, H. Ghali, W. Anis, A comparison between Si. and GaAs nanowire-based photovoltaic devices. Smart Nano-Micro Materials and Devices, International Society for Optics and Photonics, 2011, p. 820412.

  4. S. Abdellatif, K. Kirah, R. Ghannam, A.S. Khalil, W. Anis, Numerical investigation of whispering gallery modes in dielectric nanospheres for photovoltaic applications. National Radio Science Conference (NRSC), 2018 35th, IEEE, 2018, p. 99–104

  5. S. Abdellatif, K. Kirah, R. Ghannam, A. Khalil, W. Anis, Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures. Appl. Opt. 54, 5534–5541 (2015)

    Article  CAS  Google Scholar 

  6. S. Abdellatif, P. Sharifi, K. Kirah, R. Ghannam, A.S.G. Khalil, D. Erni, F. Marlow, Refractive index and scattering of porous TiO2 films. Microporous Mesoporous Mater. 264, 84–91 (2018)

    Article  CAS  Google Scholar 

  7. S. Abdellatif, S. Josten, P. Sharifi, K. Kirah, R. Ghannam, A. Khalil, D. Erni, F. Marlow, Optical investigation of porous TiO 2 in mesostructured solar cells. Physics and Simulation of Optoelectronic Devices XXVI, International Society for Optics and Photonics, 2018, p. 105260A.

  8. S. Nizetic, E. Giama, A. Papadopoulos, Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels. Part II: active cooling techniques. Energy Conver. Manag. 155, 301–323 (2018)

    Article  Google Scholar 

  9. A. Radwan, M. Emam, M. Ahmed, Comparative study of active and passive cooling techniques for concentrated photovoltaic systems. Exergetic, Energetic and Environmental Dimensions, Elsevier, 2018, pp. 475–505.

  10. D.P. Winston, P. Pounraj, A.M. Manokar, R. Sathyamurthy, A. Kabeel, Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method. Desalination 435, 140–151 (2018)

    Article  Google Scholar 

  11. S. Nižetić, M. Arıcı, F. Bilgin, F. Grubišić-Čabo, Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics. J. Cleaner Prod. 170, 1006–1016 (2018)

    Article  Google Scholar 

  12. W. Charles Lawrence Kamuyu, J. Lim, C. Won, H. Ahn, Prediction model of photovoltaic module temperature for power performance of floating PVs. Energies 11, 447 (2018)

    Article  Google Scholar 

  13. A. Bayoumi, A. Sahbel, S. Abdellatif, I. Mahmoud, A new approach for enhancing the thermal efficiency of a hybrid PV/T system. Engineering and Technology (ICET), 2014 International Conference on, IEEE, 2014, pp. 1–5

  14. B. Bijukumar, A.K. Raam, S.I. Ganesan, C. Nagamani, An investigation on the suitability of grid connected PV inverters for thermoelectric generator systems in industrial applications. 2018 International Conference on Power, Instrumentation, Control and Computing (PICC), IEEE, 2018, pp. 1–6

  15. N. Dimri, A. Tiwari, G. Tiwari, Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency. Sol. Energy 166, 159–170 (2018)

    Article  CAS  Google Scholar 

  16. H. Mahmoudi, B. Lakssir, A. Nid-Bahami, H. Elmoussaoui, A. Benyoussef, M. Hamedoun, Thermoelectric cooling micro-inverter for PV application. Sol. Energy Mater. Sol. Cells 180, 311–321 (2018)

    Article  Google Scholar 

  17. D. Wang, Q. Xu, B. Hu, S. Ma, Preparation and thermoelectric properties of PANI matrix graphene composite material. Micro & Nano Lett. 13, 652–656 (2018)

    Article  CAS  Google Scholar 

  18. R. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee, S. Stoughton, G. Wallace, C. Too, M. Thomas, A. Gestos, Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10, 838–846 (2010)

    Article  CAS  Google Scholar 

  19. J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 30, 1704386 (2018)

    Article  Google Scholar 

  20. A. Dey, O.P. Bajpai, A.K. Sikder, S. Chattopadhyay, M.A.S. Khan, Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: a proficient move towards waste energy harvesting. Renew. Sustain. Energy Rev. 53, 653–671 (2016)

    Article  CAS  Google Scholar 

  21. D. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)

    Article  Google Scholar 

  22. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  CAS  Google Scholar 

  23. K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)

    Article  CAS  Google Scholar 

  24. Z. Yan, D.L. Nika, A.A. Balandin, Thermal properties of graphene and few-layer graphene: applications in electronics. IET Cir. Devices Syst. 9, 4–12 (2015)

    Article  Google Scholar 

  25. X. Li, L. Liang, M. Yang, G. Chen, C.-Y. Guo, Poly(3,4-ethylenedioxythiophene)/graphene/carbon nanotube ternary composites with improved thermoelectric performance. Org. Electron. 38, 200–204 (2016)

    Article  CAS  Google Scholar 

  26. D. Kim, Y. Kim, K. Choi, J.C. Grunlan, C. Yu, Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 4, 513–523 (2009)

    Article  Google Scholar 

  27. L. Zhao, X. Sun, Z. Lei, J. Zhao, J. Wu, Q. Li, A. Zhang, Thermoelectric behavior of aerogels based on graphene and multi-walled carbon nanotube nanocomposites. Composites B 83, 317–322 (2015)

    Article  CAS  Google Scholar 

  28. W. Zhu, Y. Deng, Y. Wang, S. Shen, R. Gulfam, High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management. Energy 100, 91–101 (2016)

    Article  Google Scholar 

  29. M.F. Sanad, A. Shaker, S.O. Abdellatif, H.A. Ghali, Simulating the thermoelectric behaviour of CNT based harvester. 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), 2019, pp. 455–458.

  30. J. Sumfleth, K. Prehn, M.H. Wichmann, S. Wedekind, K. Schulte, A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD-and arc-grown multi-wall carbon nanotubes. Compos. Sci. Technol. 70, 173–180 (2010)

    Article  CAS  Google Scholar 

  31. J. Dong, W. Liu, H. Li, X. Su, X. Tang, C. Uher, In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile and novel wet chemical method. J. Mater. Chem. A 1, 12503–12511 (2013)

    Article  CAS  Google Scholar 

  32. M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, S. Goswami, Reduced graphene oxide-polyaniline composites—synthesis, characterization and optimization for thermoelectric applications. RSC Adv. 5, 31039–31048 (2015)

    Article  CAS  Google Scholar 

  33. F.S. Mohamed, S. Ahmed, O.A. Sameh, E. Iman, A.G. Hani, K. Khaled, Carbon-nanotube based thermoelectrical paste for enhancing solar cell effciency. E3S web of conferences, EDP Sciences, 2018, pp. 02005

  34. S. Bremner, M. Levy, C.B. Honsberg, Analysis of tandem solar cell efficiencies under AM1. 5G spectrum using a rapid flux calculation method. Prog. Photovoltaics: Res. Appl. 16, 225–233 (2008)

    Article  Google Scholar 

  35. S. Kamal, G.M. Al-sayyad, R. Abdelmoteleb, M. Abdellatif, S.O. Abdellatif, Submerged solar. Energy harvesters performance for underwater applications. In: 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), 2019, pp. 444–449.

  36. L. Markovic, K. Fotouhi, H. Lorenz, R. Jordan, P. Gaengler, S. Zimmer, Effects of bleaching agents on human enamel light reflectance. Oper. Dent. 35, 405–411 (2010)

    Article  Google Scholar 

  37. IXYS Xorporation, IXYS Korea LTD (2016)

  38. SANYO, SANYO Semiconductors Co. LTD. (2007)

  39. R. Sircar, B. Tripathi, S. Gupta, Design and simulation of thin-film silicon quantum well photovoltaic cell. J. Nano-Electron. Phys. 3(2), 11–18 (2011)

    Google Scholar 

  40. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2011)

    Google Scholar 

  41. J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)

    Article  CAS  Google Scholar 

  42. C. Ciminelli, M. Armenise, Modeling and design of a 2D photonic crystal microcavity on polymer material for sensing applications, in Third European Workshop on Optical Fibre Sensors, International Society for Optics and Photonics, 2007, p. 661933.

Download references

Acknowledgements

The authors would like to acknowledge the support and contribution of the STDF in this work. This work is part of the STDF Project entitled, “Enhancement of PV and Wind Turbine Performance for High Temperature and Low Wind Speed Environments”, Project ID#26134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh O. Abdellatif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanad, M.F., Abdellatif, S.O. & Ghali, H.A. Enhancing the performance of photovoltaic operating under harsh conditions using carbon-nanotube thermoelectric harvesters. J Mater Sci: Mater Electron 30, 20029–20036 (2019). https://doi.org/10.1007/s10854-019-02371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02371-0

Navigation