Skip to main content
Log in

Electrical characteristics of Au/PVP/n-Si structures using admittance measurements between 1 and 500 kHz

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, Au/n-Si structures with PVP polymer interlayer were fabricated and characterized using capacitance/conductance–voltage–frequency (C/G–V–f) measurements. Obtained electrical parameters were found to be sensitive to frequency due to polymer interlayer, changes of traps/states (Dit/Nss) level, interfacial/dipole polarization. The dispersion in C and G in depletion region is due to Nss/polarization, while the dispersion in accumulation region is due to interlayer/series resistance (Rs). The voltage-dependent profiles of Nss and Rs were derived using the methods of low–high frequency capacitance/Hill-Coleman and Nicollian–Brews, respectively. The width of depletion layer (Wd) and barrier height (ΦB) values increase with increasing frequency almost linearly. On the other hand, Rs decreases with increasing frequency whereas the maximum electric field (Em) exhibits opposite behavior. The high frequency C/G–V plots were corrected to reveal the Rs effect on them. The experimental results indicate that the growth of PVP interlayer by spin coating at the Au/n-Si interface yields a preferable and suitable device compared to devices with conventional insulating interlayer due to some advantages of polymer interlayers such as low-cost/weight, flexibility, and easy grown processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Bilkan, Y. Azizian-Kalandaragh, S. Altindal, R. Shokrani-Havigh, Phys. B 500, 154–160 (2016)

    Article  CAS  Google Scholar 

  2. S. Altındal Yerişkin, M. Balbasi, A. Tataroglu, J. Appl. Polym. Sci. 133, 4327–4334 (2016)

    Article  Google Scholar 

  3. M.S.P. Reddy, K. Sreenu, V.R. Reddy, C. Park, J. Mater. Sci.-Mater. Electron. 28, 4847–4855 (2017)

    Article  Google Scholar 

  4. U. Aydemir, J. Polytech. 22, 393–398 (2019)

    Google Scholar 

  5. E. Arslan, Ş. Altındal, S. Ural, Ö.A. Kayal, M. Öztürk, E. Özbay, J. Electron. Mater. 48, 887–897 (2019)

    Article  CAS  Google Scholar 

  6. S. Demirezen, A. Kaya, O. Vural, S. Altindal, Mater. Sci. Semicond. Process. 33, 140–148 (2015)

    Article  CAS  Google Scholar 

  7. H.I. Efkere, A. Tataroglu, S.S. Cetin, N. Topaloglu, M.P. Gonullu, H. Ates, J. Mol. Struct. 1165, 376–380 (2018)

    Article  CAS  Google Scholar 

  8. P.R.S. Reddy, V. Janardhanam, I. Jyothi, H.S. Chang, S.N. Lee, M.S. Lee, V.R. Reddy, C.J. Choi, Superlattices Microstruct. 111, 506–517 (2017)

    Article  CAS  Google Scholar 

  9. S. Alptekin, Ş. Altındal, J. Mater. Sci.: Mater. Electron. 30, 6491–6499 (2019)

    CAS  Google Scholar 

  10. Y. Badali, A. Nikravan, Ş. Altındal, İ. Uslu, J. Electron. Mater. 47, 3510–3520 (2018)

    Article  CAS  Google Scholar 

  11. A.G. Erooğlu, M. Yıldırım, P. Durmuş, İ. Dökme, J. Appl. Polym. Sci. 137(8), 48399–48404 (2020)

    Article  Google Scholar 

  12. N. Balaram, V.R. Reddy, P.R.S. Reddy, V. Janardhanam, C.J. Choi, Vacuum 152, 15–24 (2018)

    Article  CAS  Google Scholar 

  13. E. Erbilen Tanrıkulu, Ş. Altındal, Y. Azizian-Kalandaragh, J. Mater. Sci.: Mater. Electron. 29, 11801–11811 (2018)

    Google Scholar 

  14. S. Altındal Yerişkin, J. Electron. Mater.: Mater. Electron. 30, 17032–17039 (2019)

    Article  Google Scholar 

  15. V.R. Reddy, Appl. Phys. A 116, 1379–1387 (2014)

    Article  Google Scholar 

  16. U. Aydemir, I. Tascioglu, S. Altindal, I. Uslu, Mater. Sci. Semicond. Process. 16, 1865–1872 (2013)

    Article  CAS  Google Scholar 

  17. E. Maril, S.O. Tan, S. Altindal, I. Uslu, IEEE Trans. Electron Devices 65, 3901–3908 (2018)

    Article  CAS  Google Scholar 

  18. A. Nikravan, Y. Badali, S. Altindal, I. Uslu, I. Orak, J. Electron. Mater. 46, 5728–5736 (2017)

    Article  CAS  Google Scholar 

  19. N. Baraz, İ. Yücedağ, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci.: Mater. Electron. 28, 1315–1321 (2017)

    CAS  Google Scholar 

  20. J.R. Brews, E.H. Nicollian, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  21. Ş. Altındal, Ö. Sevgili, Y. Azizian-Kalandaragh, J. Mater. Sci.: Mater. Electron. 30, 9273–9280 (2019)

    Google Scholar 

  22. A. Buyukbas-Ulusan, İ. Taşçıoğlu, A. Tataroğlu, F. Yakuphanoğlu, S. Altındal, J. Mater. Sci.: Mater. Electron. 30, 12122–12129 (2019)

    CAS  Google Scholar 

  23. H.G. Cetinkaya, O. Sevgili, S. Altindal, Phys. B 560, 91–96 (2019)

    Article  CAS  Google Scholar 

  24. İ. Taşçıoğlu, Ö. Tüzün Özmen, H.M. Şağban, E. Yağlıoğlu, Ş. Altındal, J. Electron. Mater. 46, 2379–2386 (2017)

    Article  Google Scholar 

  25. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  26. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Application (Plenum Press, New York, 1984)

    Book  Google Scholar 

  27. N. Kumar, S. Chand, J. Alloys Compd. 817, 153294–153299 (2020)

    Article  CAS  Google Scholar 

  28. S. Altindal, O. Sevgili, Y. Azizian-Kalandaragh, IEEE Trans. Electron Devices 66, 3103–3109 (2019)

    Article  CAS  Google Scholar 

  29. B.K. Jones, J. Santana, M. McPherson, Solid State Commun. 107, 47–50 (1998)

    Article  CAS  Google Scholar 

  30. H.N. Chandrakala, B. Ramaraj, Shivakumaraiah, G.M. Madhu, Siddaramaiah, J. Mater. Sci. 47, 8076–8084 (2012)

  31. E.E. Tanrikulu, S. Demirezen, S. Altindal, I. Uslu, J. Mater. Sci.-Mater. Electron. 29, 2890–2898 (2018)

    Article  CAS  Google Scholar 

  32. M. Sharma, S.K. Tripathi, Appl. Phys. A 113, 491–499 (2013)

    Article  CAS  Google Scholar 

  33. G.E. Demir, I. Yucedag, S. Altındal Yeriskin, J. Nanoelectron. Optoelectron. 14, 653–659 (2019)

    Article  CAS  Google Scholar 

  34. S. Alptekin, S.O. Tan, S. Altindal, IEEE Trans. Nanotechnol. 18, 1196–1199 (2019)

    Article  CAS  Google Scholar 

  35. S. Altındal Yerişkin, Igdir Univ. J. Inst Sci. Technol. 9(2), 835–846 (2019)

    Article  Google Scholar 

  36. A. Karabulut, A. Türüt, Ş. Karataş, J. Mol. Struct. 1157, 513–518 (2019)

    Article  Google Scholar 

  37. A. Karabulut, Bull. Mater. Sci. 42(1), 5–15 (2019)

    Article  Google Scholar 

  38. A. Karabulut, A. Sarilmaz, F. Ozel, İ. Orak, M.A. Şahinkaya, Curr. Appl. Phys. 20(1), 58–64 (2020)

    Article  Google Scholar 

  39. N. Biyikli, A. Karabulut, H. Efeoglu, B. Guzeldir, A. Turut, Phys. Scr. 89(9), 095804–095810 (2014)

    Article  Google Scholar 

  40. A. Kaya, H.G. Çetnkaya, Ş. Altındal, I. Uslu, Int. J. Mod. Phys. B 30(16), 1650090–1650106 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Gazi University, Scientific Research Project under the project number GU-BAP.05/2019-26 and Çankırı Karatekin University, Scientific Research Project under the project number FF080120B08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebahaddin Alptekin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alptekin, S., Altındal, Ş. Electrical characteristics of Au/PVP/n-Si structures using admittance measurements between 1 and 500 kHz. J Mater Sci: Mater Electron 31, 13337–13343 (2020). https://doi.org/10.1007/s10854-020-03887-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03887-6

Navigation