Skip to main content
Log in

A study on CdCl2 activation of CBD-CdS films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS) thin films were deposited using chemical bath deposition (CBD) technique on fluorine-doped tin oxide glass substrates. Cadmium sulfate, thiourea, and ammonium hydroxide were used as Cd source, S source, and the complexing agent, respectively in the reaction bath. The post-deposition CdCl2 activation of chemical bath deposited CdS (CBD-CdS) thin films was done by dip coating in a saturated CdCl2 bath. X-ray diffractograms show the growth of large CdS grains with better crystalline quality over the recrystallization process due to CdCl2 treatment. The development of large clusters was determined to be due to coalescence of smaller clusters. The photoelectrochemical (PEC) cell (CdS/Na2S2O3/Pt) parameters, such as VOC and ISC for CdCl2 activated CBD-CdS thin films were found to be higher compared to untreated CBD-CdS thin films. The improved effective surface area of the film and higher carrier concentration due to grain boundary passivation could be the reason for higher VOC and ISC values found in CdCl2-treated CdS films. Additionally, all the CdCl2-treated CdS films showed an increase in the optical transmittance spectra and bandgap compared to untreated CdS films. Relative energy band edge position of the grown CdS films was found to be adjustable with the CdCl2 treatment time. The best photoactivity was found for the CdS films which were dip-coated for 10 min in CdCl2 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Moualkia, S. Hariech, M.S. Aida, Thin Solid Films 518, 1259–1262 (2009). https://doi.org/10.1016/j.tsf.2009.04.067

    Article  CAS  Google Scholar 

  2. L. Wan, Z. Bai, Z. Hou, D. Wang, H. Sun, L. Xiong, Thin Solid Films 518, 6858–6865 (2010). https://doi.org/10.1016/j.tsf.2010.07.011

    Article  CAS  Google Scholar 

  3. C.S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, D.L. Morel, Thin Solid Films 361–362, 520–526 (2000). https://doi.org/10.1016/S0040-6090(99)00824-X

    Article  Google Scholar 

  4. G. Sasikala, R. Dhnasekaran, C. Subramanian, Thin Solid Films 302, 71–76 (1997). https://doi.org/10.1016/S0040-6090(96)09582-X

    Article  CAS  Google Scholar 

  5. A. Gupta, V. Parikh, A.D. Compaan, Sol. Energy Mater. Sol. Cells 90, 2263–2271 (2006). https://doi.org/10.1016/j.solmat.2006.02.029

    Article  CAS  Google Scholar 

  6. H.C. Chou, A.R. Ohatgi, J. Electron. Mater. 23, 31 (1994). https://doi.org/10.1007/BF02651264

    Article  CAS  Google Scholar 

  7. S.A. Al Kuhaimi, Vacuum 51(3), 349–355 (1998). https://doi.org/10.1016/S0042-207X(98)00112-2

    Article  Google Scholar 

  8. O. Savadogo, Chemically and electrochemically deposited thin films for solar energy materials. Sol. Energy Mater. Sol. Cells 52, 361–368 (1998). https://doi.org/10.1016/S0927-0248(97)00247-X

    Article  CAS  Google Scholar 

  9. E.X. Mathew, Sol. Energy Mater. Sol. Cells 76, 313–325 (2003). https://doi.org/10.1016/S0927-0248(01)00090-3

    Article  Google Scholar 

  10. W.G.C. Kumarage, R.P. Wijesundera, V.A. Seneviratne, C.P. Jayalath, B.S. Dassanayake, J. Phys. D. Appl. Phys. 49, 95109 (2016). https://doi.org/10.1088/0022-3727/49/9/095109

    Article  CAS  Google Scholar 

  11. W.G.C. Kumarage, L.B.D.R.P. Wijesundara, V.A. Seneviratne, C.P. Jayalath, B.S. Dassanayake, Procedia Eng. 139, 64–68 (2016). https://doi.org/10.1016/j.proeng.2015.09.215

    Article  CAS  Google Scholar 

  12. W.G.C. Kumarage, R.P. Wijesundera, V.A. Seneviratne, C.P. Jayalath, T. Varga, M.I. Nandasiri, B.S. Dassanayake, Mater. Chem. Phys. 200, 1–8 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.052

    Article  CAS  Google Scholar 

  13. W.G.C. Kumarage, L.B.D.R.P. Wijesundara, V.A. Seneviratne, C.P. Jayalath, B.S. Dassanayake, Semicond. Sci. Technol. 32, 045014 (2017). https://doi.org/10.1088/1361-6641/aa5ee3

    Article  CAS  Google Scholar 

  14. F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, Y. Liu, J. Alloy. Compd. 493, 305–308 (2010). https://doi.org/10.1016/j.jallcom.2009.12.088

    Article  CAS  Google Scholar 

  15. M. Tsuji, T. Aramoto, H. Ohyama, T. Hibino, K. Omura, Jpn. J. Appl. Phys. 39, 3902–3906 (2000). https://doi.org/10.1143/JJAP.39.3902

    Article  CAS  Google Scholar 

  16. I.M. Dharmadasa, Coatings 4, 282–307 (2014). https://doi.org/10.3390/coatings4020282

    Article  CAS  Google Scholar 

  17. J. Salinger, J. Acta Polytechnica 46, 25–27 (2006)

    Google Scholar 

  18. M.J. Kim, J.J. Lee, S.H. Lee, S.H. Sohn, Solar Energy Mater. Solar Cells 109, 209–214 (2013). https://doi.org/10.1016/j.solmat.2012.11.012

    Article  CAS  Google Scholar 

  19. D.B. Laks, C.G. Van de Walle, G.F. Neumark, S.T. Pantelides, Phys. Rev. Lett. 66, 648–651 (1991)

    Article  CAS  Google Scholar 

  20. M.A. Islam, M.S. Hossain, M.M. Aliyu, M.R. Karim, T. Razykov, K. Sopian, N. Amin, Thin Solid Films 546, 367–374 (2013). https://doi.org/10.1016/j.tsf.2013.04.067

    Article  CAS  Google Scholar 

  21. J. Lee, Curr. Appl. Phys. 11(1), 103–108 (2011). https://doi.org/10.1016/j.cap.2010.11.099

    Article  Google Scholar 

  22. A. Rios-Flores, J.L. Peña, V. Castro-Peña, O. Ares, R. Castro-Rodríguez, A. Bosio, Sol. Energy 84(6), 1020–1026 (2010). https://doi.org/10.1016/j.solener.2010.03.010

    Article  CAS  Google Scholar 

  23. W.G.C. Kumarage, R.P. Wijesundera, V.A. Seneviratne, C.P. Jayalath, T. Varga, B.S. Dassanayake, Appl. Phys. A 124, 494 (2018). https://doi.org/10.1007/s00339-018-1910-0

    Article  CAS  Google Scholar 

  24. K.K.M.B.B. Adikaram, W.G.C. Kumarage, T. Varga, B.S. Dassanayake, J. Electron. Mater. 48(7), 4424–4431 (2019). https://doi.org/10.1007/s11664-019-07215-5

    Article  CAS  Google Scholar 

  25. W.G.C. Kumarage, R.P. Wijesundera, V.A. Seneviratne, C.P. Jayalath, N. Kaur, E. Comini, B.S. Dassanayake, J. Photochem. Photobiol. A 367, 171–177 (2018). https://doi.org/10.1016/j.jphotochem.2018.08.029

    Article  CAS  Google Scholar 

  26. A. Oliva-Avilés, R. Patiño, A. Oliva, Appl. Surf. Sci. 256, 6090–6095 (2010). https://doi.org/10.1016/j.apsusc.2010.03.125

    Article  CAS  Google Scholar 

  27. A. Mukherjee, P. Ghosh, A.A. Aboud, P. Mitra, Mater. Chem. Phys. 184, 101–109 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.030

    Article  CAS  Google Scholar 

  28. A.I. Oliva, O.S. Canto, R.C. Rodrigues, P. Quintana, Thin Solid Films 391(1), 28–35 (2001). https://doi.org/10.1016/S0040-6090(01)00830-6

    Article  CAS  Google Scholar 

  29. A. Kariper, E. Güneri, F. Gödethe, C. Gümüs, T. Özpozan, Mater. Chem. Phys. 129, 183–188 (2011). https://doi.org/10.1016/j.matchemphys.2011.03.070

    Article  CAS  Google Scholar 

  30. S.A. Ringel, A.W. Smith, M.H. MacDougal, A. Rohatgi, J. Appl. Phys. 70(2), 881 (1991). https://doi.org/10.1063/1.349652

    Article  CAS  Google Scholar 

  31. A. Luque, S. Hegedus, Handbook of photovoltaic science and engineering (John Wiley & Sons, Chichester, 2011)

    Google Scholar 

  32. S. Du, Y. Li, Adv. Mater. Sci. Eng. 2015, 8 (2015). https://doi.org/10.1155/2015/969580

    Article  CAS  Google Scholar 

  33. V. Bilgin, S. Kose, F. Atay, I. Akyuz, J. Mater. Sci. 40, 1909–1915 (2005). https://doi.org/10.1007/s10853-005-1210-x

    Article  CAS  Google Scholar 

  34. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Mat. Sci. Semicon. Proc. 58, 51–60 (2017). https://doi.org/10.1016/j.mssp.2016.11.028

    Article  CAS  Google Scholar 

  35. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Mater. Res. Bull. 96, 188–195 (2017). https://doi.org/10.1016/j.materresbull.2017.04.026

    Article  CAS  Google Scholar 

  36. H.R. Moutinho, R.G. Dhere, M.M. Al-Jassim, D.H. Levi, L.L. Kazmerski, J. Vac. Sci. Technol. A17, 1793 (1999). https://doi.org/10.1116/1.581892

    Article  Google Scholar 

  37. A. Nawaz, Z. Rabeel, N.A. Shah, World Appl. Sci. J. 31(8), 1522–1530 (2014). https://doi.org/10.5829/idosi.wasj.2014.31.08.621

    Article  CAS  Google Scholar 

  38. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, J. Mater. Sci.: Mater. Electron. 28, 276–283 (2017). https://doi.org/10.1007/s10854-016-5521-2

    Article  CAS  Google Scholar 

  39. M. Akif, S. Aliyev, M. El-Rouby, Int. J. Thin Film Sci. Technol. 2, 195–2005 (2013). https://doi.org/10.12785/ijtfst/020305

    Article  Google Scholar 

  40. W.G.C. Kumarage, R.P. Wijesundera, N. Kaur, D. Zappa, V.A. Seneviratne, C.P. Jayalath, B.S. Dassanayake, Int. J. Electroact. Mater. 7, 1–6 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Solar Edu-Training project of the Ministry of Science, Technology, and Research, Sri Lanka. Part of the research was performed at the Sensor Lab, Department of Information Engineering, Università Degli Studi Di Brescia, Brescia, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Dassanayake.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumarage, W.G.C., Wijesundera, R.P., Seneviratne, V.A. et al. A study on CdCl2 activation of CBD-CdS films. J Mater Sci: Mater Electron 31, 13330–13336 (2020). https://doi.org/10.1007/s10854-020-03886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03886-7

Navigation