Skip to main content
Log in

Development of CdMnTe thin films using electroplating technique for opto-electronic device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cathodic electrodeposition technique has been successfully used to achieve the growth of polycrystalline CdMnTe ternary compound thin films at different cathodic potentials. The choice of various cathodic potentials used in this work was made from the cyclic voltammogram results. The CdMnTe thin films were electroplated from electrolytes containing CdSO4, TeO2 and MnSO4·H2O in an acidic aqueous medium. The electrodeposition was carried out on glass/fluorine-doped tin oxide {FTO} substrates. The structural, optical, morphological and electrical properties of the CdMnTe thin films were studied using X-ray diffraction (XRD), UV–Vis spectroscopy, scanning electron microscopy (SEM), current–voltage (IV) characteristics and photo-electro-chemical (PEC) cell measurements respectively. The materials investigated in this work were explored under three different conditions namely: as-deposited (AD), heat-treated ordinarily in air (HT) and heat-treated in air in the presence of CdCl2 surface treatment (CC). Results from the XRD showed that the electrodeposited films are polycrystalline with the presence of CdTexOy and CdMnTe peaks. The electroplated films have cubic crystal structures and the preferred orientation was found to be along the (111) plane. The optical energy bandgaps of the thin films were found to be deposition potential dependent. Electrical conductivity types namely p- and n-type conductivity were also obtained at different cathodic potentials using photo-electro-chemical cell measurement technique for as-deposited and heat-treated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Burger, K. Chattopadhyay, H. Chen, J. Olivier Ndap, X. Ma, S. Trivedi et al., Crystal growth, fabrication and evaluation of cadmium manganese telluride gamma ray detectors. J. Cryst. Growth 198–199, 872–876 (1999). https://doi.org/10.1016/S0022-0248(98)01171-3

    Article  Google Scholar 

  2. A. Hossain, Y. Cui, A.E. Bolotnikov, G.S. Camarda, G. Yang, D. Kochanowska et al., Vanadium-doped cadmium manganese telluride (Cd1-xMnxTe) crystals as X- and gamma-ray detectors. J. Electron. Mater. 38, 1593–1599 (2009). https://doi.org/10.1007/s11664-009-0780-9

    Article  CAS  Google Scholar 

  3. L.A. Najam, N.Y. Jamil, R.M. Yousif, Fabrication of CdMnTe semiconductor as radiation detector. Indian J. Phys. 86, 267–272 (2012). https://doi.org/10.1007/s12648-012-0051-0

    Article  CAS  Google Scholar 

  4. G.B. Sakr, I.S. Yahia, Effect of illumination and frequency on the capacitance spectroscopy and the relaxation process of p-ZnTe/n-CdMnTe/GaAs magnetic diode for photocapacitance applications. J. Alloys Compd. 503, 213–219 (2010). https://doi.org/10.1016/j.jallcom.2010.04.235

    Article  CAS  Google Scholar 

  5. I.S. Yahia, G.B. Sakr, T. Wojtowicz, G. Karczewski, p-ZnTe/n-CdMnTe/n-GaAs diluted magnetic diode for photovoltaic applications. Semicond. Sci. Technol. 25, 095001 (2010). https://doi.org/10.1088/0268-1242/25/9/095001

    Article  CAS  Google Scholar 

  6. L.A. Kosyachenko, R. Yatskiv, N.S. Yurtsenyuk, O.L. Maslyanchuk, J. Grym, Graphite/CdMnTe Schottky diodes and their electrical characteristics. Semicond. Sci. Technol. 29, 015006 (2014). https://doi.org/10.1088/0268-1242/29/1/015006

    Article  CAS  Google Scholar 

  7. J. Zhang, W. Jie, Y. Hao, X. Wang, Investigation on gold and aluminum contacts for Cd0.8Mn0.2Te crystals. Semicond. Sci. Technol. 23, 75010 (2008). https://doi.org/10.1088/0268-1242/23/7/075010

    Article  CAS  Google Scholar 

  8. P. Vanýsek, in: CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2000), pp. 80–89.

  9. B.M. Basol, Electrodeposited CdTe and HgCdTe solar cells. Sol. Cells. 23, 69–88 (1988)

    Article  CAS  Google Scholar 

  10. T. Toyama, K. Matsune, H. Oda, M. Ohta, H. Okamoto, X-ray diffraction study of CdS/CdTe heterostructure for thin-film solar cell: influence of CdS grain size on subsequent growth of (111)-oriented CdTe film. J. Phys. D 39, 1537–1542 (2006). https://doi.org/10.1088/0022-3727/39/8/013

    Article  CAS  Google Scholar 

  11. O.I. Olusola, Optoelectronic devices based on graded bandgap structures utilising electroplated semiconductors, PhD thesis, Sheffield Hallam University, Sheffield, 2016. https://shura.shu.ac.uk/id/eprint/14127.

  12. M.L. Madugu, O.I. Olusola, A. Lawal, Synthesis and characterisation of CdTe thin films. Sule Lamido Univ. J. Sci. Technol. 1, 122–130 (2020)

    Google Scholar 

  13. I.M. Dharmadasa, M.L. Madugu, O.I. Olusola, O.K. Echendu, F. Fauzi, D.G. Diso et al., Electroplating of CdTe thin films from cadmium sulphate precursor and comparison of layers grown by 3-electrode and 2-electrode systems. Coatings 7, 1–17 (2017). https://doi.org/10.3390/coatings7020017

    Article  CAS  Google Scholar 

  14. M.L. Madugu, O.I. Olusola, A.A. Ojo, N.Y. Pindiga, Characterisation of electrochemically grown InxSey thin films for application in photonic devices. J. Mater. Environ. Sci. 9, 2842–2848 (2018)

    CAS  Google Scholar 

  15. I.M. Dharmadasa, O.K. Echendu, F. Fauzi, N.A. Abdul-Manaf, O.I. Olusola, H.I. Salim et al., Improvement of composition of CdTe thin films during heat treatment in the presence of CdCl2. J. Mater. Sci. Mater. Electron. 28, 2343–2352 (2017). https://doi.org/10.1007/s10854-016-5802-9

    Article  CAS  Google Scholar 

  16. A.A. Ojo, O.I. Olusola, I.M. Dharmadasa, Effect of the inclusion of galium in normal cadmium chloride treatment on electrical properties of CdS/CdTe solar cell. Mater. Chem. Phys. 196, 229–236 (2017). https://doi.org/10.1016/j.matchemphys.2017.04.053

    Article  CAS  Google Scholar 

  17. H.I. Salim, V. Patel, A. Abbas, J.M. Walls, I.M. Dharmadasa, Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells. J. Mater. Sci. Mater. Electron. 26, 3119–3128 (2015). https://doi.org/10.1007/s10854-015-2805-x

    Article  CAS  Google Scholar 

  18. N.B. Chaure, S. Bordas, A.P. Samantilleke, S.N. Chaure, J. Haigh, I.M. Dharmadasa, Investigation of electronic quality of chemical bath deposited cadmium sulphide layers used in thin film photovoltaic solar cells. Thin Solid Films 437, 10–17 (2003). https://doi.org/10.1016/S0040-6090(03)00671-0

    Article  CAS  Google Scholar 

  19. N.S. Yurtsenyuk, L.A. Kosyachenko, V.M. Sklyarchuk, O.L. Maslyanchuk, O.F. Sklyarchuk, E.V. Grushko, Self-compensation mechanism in semi-insulating CdMnTe crystals intended for X/γ-ray detectors. Acta Phys. Pol. A 120, 957–959 (2011)

    Article  CAS  Google Scholar 

  20. M.J. Peterson, F.H. Cocks, Tellurium selective absorber surfaces. Mater. Sci. Eng. 41, 143–147 (1979). https://doi.org/10.1007/s13398-014-0173-7.2

    Article  CAS  Google Scholar 

  21. G. Li, X. Cui, C. Tan, N. Lin, Solvothermal synthesis of polycrystalline tellurium nanoplates and their conversion into single crystalline nanorods. RSC Adv. 4, 954–958 (2014). https://doi.org/10.1039/C3RA41801D

    Article  CAS  Google Scholar 

  22. I.S. Yahia, F. Yakuphanoglu, S. Chusnutdinow, T. Wojtowicz, G. Karczewski, Photovoltaic characterization of n-CdTe/p-CdMnTe/GaAs diluted magnetic diode. Curr. Appl. Phys. 13, 537–543 (2013). https://doi.org/10.1016/j.cap.2012.09.018

    Article  Google Scholar 

  23. O.I. Olusola, M.L. Madugu, N.A. Abdul-Manaf, I.M. Dharmadasa, Growth and characterisation of n- and p-type ZnTe thin films for applications in electronic devices. Curr. Appl. Phys. 16, 120–130 (2016). https://doi.org/10.1016/j.cap.2015.11.008

    Article  Google Scholar 

  24. Y.F. Lin, J. Song, Y. Ding, S.Y. Lu, Z.L. Wang, Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect. Adv. Mater. 20, 3127–3130 (2008). https://doi.org/10.1002/adma.200703236

    Article  CAS  Google Scholar 

  25. G.A. Chamberlain, Organic solar cells: a review. Sol. Cells. 8, 47–83 (1983). https://doi.org/10.1016/0379-6787(83)90039-X

    Article  CAS  Google Scholar 

  26. D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3rd edn. (McGraw-Hill, New York, 2003)

    Google Scholar 

Download references

Acknowledgements

The principal author wishes to express gratitude to the Commonwealth Scholarship Commission (Grant Number: NGCA-2012-45) and Sheffield Hallam University for financial support to carry out this research. The financial support of The Federal University of Technology, Akure, Nigeria is also recognised.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Olusola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olusola, O.I., Madugu, M.L., Ojo, A.A. et al. Development of CdMnTe thin films using electroplating technique for opto-electronic device applications. J Mater Sci: Mater Electron 31, 22151–22161 (2020). https://doi.org/10.1007/s10854-020-04717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04717-5

Navigation