Skip to main content
Log in

Promoting effect of Bi in Ni–Bi oxide electrocatalysts for methanol oxidation reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of nickel-based materials doping with bismuth element were synthesized by a sol–gel method and investigated as efficient electrocatalysts for methanol electrooxidation in alkaline environment. The physicochemical properties of the materials were well characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TG), X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical measurements illustrated that the introduction of bismuth element can enhance the catalytic activity of NiO catalyst for methanol oxidation reaction. The current density of Ni100Bi1 nano-oxides increased by 30% compared with NiO in 1 M NaOH with 1 M CH3OH solution. The prepared materials exhibited favorable stability for methanol oxidation. Thus, Ni100Bi1 nano-oxides appear to be a promising catalyst for methanol oxidation reaction (MOR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Peng, D. Chen, X. Yang, D. Wang, M. Li, C.C. Tseng, R. Panneerselvam, X. Wang, W. Hu, J. Tian, Y. Zhao, Microwave-assisted synthesis of highly dispersed PtCu nanoparticles on three-dimensional nitrogen-doped graphene networks with remarkably enhanced methanol electrooxidation. ACS Appl. Mater. Interfaces. 8, 33673–33680 (2016)

    CAS  Google Scholar 

  2. C. Li, Z. Yang, X. Liu, Y. Zhang, J. Dong, Q. Zhang, H. Cheng, Enhanced performance of sulfonated poly (ether ether ketone) membranes by blending fully aromatic polyamide for practical application in direct methanol fuel cells (DMFCs). Int. J. Hydrogen Energy. 42, 28567–28577 (2017)

    CAS  Google Scholar 

  3. S. Yousefi, D.D. Ganji, Experimental investigation of a passive direct methanol fuel cell with 100 cm2 active areas. Electrochim. Acta 85, 693–699 (2012)

    CAS  Google Scholar 

  4. M. Zhang, J. Xie, Q. Sun, Z. Yan, M. Chen, J. Jing, Enhanced electrocatalytic activity of high Pt-loadings on surface functionalized graphene nanosheets for methanol oxidation. Int. J. Hydrogen Energy. 38, 16402–16409 (2013)

    CAS  Google Scholar 

  5. K. Mikkelsen, B. Cassidy, N. Hofstetter, L. Bergquist, A. Taylor, D.A. Rider, Block copolymer templated synthesis of core–shell PtAu bimetallic nanocatalysts for the methanol oxidation reaction. Chem. Mater.. 26, 6928–6940 (2014)

    CAS  Google Scholar 

  6. A.H.A. Monteverde Videla, D. Sebastián, N.S. Vasile, L. Osmieri, A.S. Aricò, V. Baglio, S. Specchia, Performance analysis of Fe–N–C catalyst for DMFC cathodes: effect of water saturation in the cathodic catalyst layer. Int. J. Hydrogen Energy 41, 22605–22618 (2016)

    CAS  Google Scholar 

  7. N. Jung, Y.-H. Cho, M. Ahn, J.W. Lim, Y.S. Kang, D.Y. Chung, J. Kim, Y.-H. Cho, Y.-E. Sung, Methanol-tolerant cathode electrode structure composed of heterogeneous composites to overcome methanol crossover effects for direct methanol fuel cell. Int. J. Hydrogen Energy 36, 15731–15738 (2011)

    CAS  Google Scholar 

  8. N. Kakati, J. Maiti, S.H. Lee, S.H. Jee, B. Viswanathan, Y.S. Yoon, Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt-Ru. Chem. Rev. 114, 12397–12429 (2014)

    CAS  Google Scholar 

  9. X.-Y. Li, W.-W. Yang, Y.-L. He, T.-S. Zhao, Z.-G. Qu, Effect of anode micro-porous layer on species crossover through the membrane of the liquid-feed direct methanol fuel cells. Appl. Therm. Eng.. 48, 392–401 (2012)

    CAS  Google Scholar 

  10. A. Faghri, X. Li, H. Bahrami, Recent advances in passive and semi-passive direct methanol fuel cells. Int. J. Therm. Sci.. 62, 12–18 (2012)

    CAS  Google Scholar 

  11. W. Yuan, Z. Zhang, J. Hu, B. Zhou, Y. Tang, Passive vapor-feed direct methanol fuel cell using sintered porous metals to realize high-concentration operation. Appl. Energy 136, 143–149 (2014)

    CAS  Google Scholar 

  12. S.D. Sajjad, D. Liu, Z. Wei, S. Sakri, Y. Shen, Y. Hong, F. Liu, Guanidinium based blend anion exchange membranes for direct methanol alkaline fuel cells (DMAFCs). J. Power Sour. 300, 95–103 (2015)

    CAS  Google Scholar 

  13. S. Yu, Q. Liu, W. Yang, K. Han, Z. Wang, H. Zhu, Graphene–CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells. Electrochim. Acta 94, 245–251 (2013)

    CAS  Google Scholar 

  14. L. Song, T. Wang, H. Xue, X. Fan, J. He, In-situ Preparation of pd incorporated ordered mesoporous carbon as efficient electrocatalyst for oxygen reduction reaction. Electrochim. Acta 191, 355–363 (2016)

    CAS  Google Scholar 

  15. Z.L. Zhao, L.Y. Zhang, S.J. Bao, C.M. Li, One-pot synthesis of small and uniform Au@PtCu core–alloy shell nanoparticles as an efficient electrocatalyst for direct methanol fuel cells. Appl. Catal., B. 174–175, 361–366 (2015)

    Google Scholar 

  16. M.M. Mohamed, M. Khairy, S. Eid, Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell. J. Power Sour. 304, 255–265 (2016)

    CAS  Google Scholar 

  17. R. Ding, L. Qi, M. Jia, H. Wang, Simple hydrothermal synthesis of mesoporous spinel NiCo2O4 nanoparticles and their catalytic behavior in CH3OH electro-oxidation and H2O2 electro-reduction. Catal. Sci. Technol.. 3, 3207–3215 (2013)

    CAS  Google Scholar 

  18. L. Qian Jiang, H. Jiang, J. Hou, S. Qi, Wang, G. Sun, Promoting effect of Ni in PtNi Bimetallic electrocatalysts for the methanol oxidation reaction in alkaline media: experimental and density functional theory studies. J. Phys. Chem. C 46, 19714–19722 (2010)

    Google Scholar 

  19. G. Rajeshkhanna, G. Ranga Rao, Micro and nano-architectures of Co3O4 on Ni foam for electro-oxidation of methanol. Int. J. Hydrogen Energy 43, 4706–4715 (2018)

    CAS  Google Scholar 

  20. D.E. Pissinis, L.E. Sereno, J.M. Marioli, Characterization of glucose electro-oxidation at Ni and Ni–Cr alloy electrodes. J. Electroanal. Chem. 694, 23–29 (2013)

    CAS  Google Scholar 

  21. R.M.A. Hameed, K.M. El-Khatib, Ni–P and Ni–Cu–P modified carbon catalysts for methanol electro-oxidation in KOH solution. Int. J. Hydrogen Energy 35, 2517–2529 (2010)

    Google Scholar 

  22. R.M.A. Hameed, Microwave irradiated Ni–MnOx/C as an electrocatalyst for methanol oxidation in KOH solution for fuel cell application. Appl. Surf. Sci.. 357, 417–428 (2015)

    CAS  Google Scholar 

  23. G.-Y. Hou, Y.-Y. Xie, L.-K. Wu, H.-Z. Cao, Y.-P. Tang, G.-Q. Zheng, Electrocatalytic performance of Ni-Ti-O nanotube arrays/NiTi alloy electrode annealed under H2 atmosphere for electro-oxidation of methanol. Int. J. Hydrogen Energy 41, 9295–9302 (2016)

    CAS  Google Scholar 

  24. S. Yan, L. Gao, S. Zhang, L. Gao, W. Zhang, Y. Li, Investigation of AuNi/C anode catalyst for direct methanol fuel cells. Int. J. Hydrogen Energy 38, 12838–12846 (2013)

    CAS  Google Scholar 

  25. A.S. Bauskar, C.A. Rice, Spontaneously Bi decorated carbon supported Pd nanoparticles for formic acid electro-oxidation. Electrochim. Acta 107, 562–568 (2013)

    CAS  Google Scholar 

  26. J. Christoffers, Cerium and bismuth catalysis hand in hand—Synthesis of a eight-membered ring lactam library. Catal. Today 159, 96–99 (2011)

    CAS  Google Scholar 

  27. I.G. Casella, M. Contursi, Characterization of bismuth adatom-modified palladium electrodes. Electrochim. Acta 52, 649–657 (2006)

    CAS  Google Scholar 

  28. J. Cai, Y. Huang, Y. Guo, Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium. Electrochim. Acta 99, 22–29 (2013)

    CAS  Google Scholar 

  29. M.A. Rahman, R. Radhakrishnan, R. Gopalakrishnan, Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method. J. Alloys Compd. 742, 421–429 (2018)

    Google Scholar 

  30. D. Basu, S. Basu, Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. Int. J. Hydrogen Energy 37, 4678–4684 (2012)

    CAS  Google Scholar 

  31. K.H. Ng, S. Lidiyawati, M.R. Somalu, A. Muchtar, H.A. Rahman, Influence of calcination on the properties of nickel oxide-samarium doped ceria carbonate (NiO-SDCC) composite anodes. Procedia Chem. 19, 267–274 (2016)

    CAS  Google Scholar 

  32. M.A. Abdel Rahim, R.M. Abdel Hameed, M.W. Khalil, Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J. Power Sour. 134, 160–169 (2004)

    CAS  Google Scholar 

  33. S.N. Azizi, S. Ghasemi, N.S. Gilani, An electrode with Ni(II) loaded analcime zeolite catalyst for the electrooxidation of methanol. Chin. J. Catal. 35, 383–390 (2014)

    CAS  Google Scholar 

  34. W. Bing Dong, X. Li, Z. Huang, T. Ali, Z. Zhang, Y. Yang, Hou, Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy 55, 37–41 (2019)

    Google Scholar 

  35. H. Bode, K. Dehmel, J. Witte, Zur kenntnis der nickel-hydroxidelektroded-I.Über das nickel (II)-hydroxidhydrat, Electrochim. Acta 11, 1079–1087 (1966)

    CAS  Google Scholar 

  36. D. Singh, Characteristics and effects of g -NiOOH on cell performance and a method to quantify it in nickel electrodes. J. Electrochem. Soc. 145, 116–120 (1998)

    CAS  Google Scholar 

  37. B. Norouzi, M. Norouzi, Methanol electrooxidation on novel modified carbon paste electrodes with supported poly(isonicotinic acid) (sodium dodecyl sulfate)/Ni-Co electrocatalysts. J. Solid State Electrochem. 16, 3003–3010 (2012)

    CAS  Google Scholar 

  38. H. Cheshideh, F. Nasirpouri, Cyclic voltammetry deposition of nickel nanoparticles on TiO2 nanotubes and their enhanced properties for electro-oxidation of methanol. J. Electroanal. Chem. 797, 121–133 (2017)

    CAS  Google Scholar 

  39. N.A.M. Barakat, M.H. El-Newehy, A.S. Yasin, Z.K. Ghouri, S.S. Al-Deyab, Ni&Mn nanoparticles-decorated carbon nanofibers as effective electrocatalyst for urea oxidation. Appl. Catal. A. 510, 180–188 (2016)

    CAS  Google Scholar 

  40. X. Song, Q. Sun, L. Gao, W. Chen, Y. Wu, Y. Li, L. Mao, J.-H. Yang, Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol. Int. J. Hydrogen Energy 43, 12091–12102 (2018)

    CAS  Google Scholar 

  41. S. Samanta, K. Bhunia, D. Pradhan, B. Satpati, R. Srivastava, Ni and Cu ion-exchanged nanostructured mesoporous zeolite: a noble metal free, efficient, and durable electrocatalyst for alkaline methanol oxidation reaction. Mater. Today Energy 8, 45–56 (2018)

    Google Scholar 

  42. X. Cui, W. Guo, M. Zhou, Y. Yang, Y. Li, P. Xiao, Y. Zhang, X. Zhang, Promoting effect of Co in Ni(m)Co(n) (m + n = 4) bimetallic electrocatalysts for methanol oxidation reaction. ACS Appl. Mater. Interfaces 7, 493–503 (2015)

    CAS  Google Scholar 

  43. M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang, J. An, Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim. Acta 151, 99–108 (2015)

    CAS  Google Scholar 

  44. W. Wang, R. Li, X. Hua, R. Zhang, Methanol electrooxidation on glassy carbon electrode modified with bimetallic Ni(II)Co(II)salen complexes encapsulated in mesoporous zeolite A. Electrochim. Acta 163, 48–56 (2015)

    CAS  Google Scholar 

  45. Y.Y. Tong, C.D. Gu, J.L. Zhang, H. Tang, X.L. Wang, J.P. Tu, Thermal growth of NiO on interconnected Ni–P tube network for electrochemical oxidation of methanol in alkaline medium. Int. J. Hydrogen Energy 41, 6342–6352 (2016)

    CAS  Google Scholar 

  46. P.R. Jothi, S. Kannan, Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one dimensional NiMoO4 nanorods. J. Power Sour. 277, 350–359 (2015)

    CAS  Google Scholar 

  47. Y. Miao, Z. Yang, X. Liu, L. Xu, L. Ouyang, Y. Gu, H. Chang, R. Ouyang, Self-assembly of BiIII ultrathin layer on Pt surface for non-enzymatic glucose sensing. Electrochim. Acta 111, 621–626 (2013)

    CAS  Google Scholar 

  48. B. Tang, Y. Lin, Z. Xing, Y. Duan, S. Pan, Y. Dai, J. Yu, J. Zou, Porous coral reefs-like MoS2/nitrogen-doped bio-carbon as an excellent Pt support/co-catalyst with promising catalytic activity and CO-tolerance for methanol oxidation reaction. Electrochim. Acta 246, 517–527 (2017)

    CAS  Google Scholar 

  49. F. Wu, Z. Zhang, F. Zhang, D. Duan, Y. Li, G. Wei, S. Liu, Q. Yuan, E. Wang, X. Hao, Exploring the role of cobalt in promoting the electroactivity of amorphous Ni-B nanoparticles toward methanol oxidation. Electrochim. Acta 287, 115–123 (2018)

    CAS  Google Scholar 

  50. Y. Huang, J. Cai, Y. Guo, A high-efficiency microwave approach to synthesis of Bi-modified Pt nanoparticle catalysts for ethanol electro-oxidation in alkaline medium. Appl. Catal. B. 129, 549–555 (2013)

    CAS  Google Scholar 

  51. Y. Gu, J. Luo, Y. Liu, H. Yang, R. Ouyang, Y. Miao, Synthesis of bimetallic Ni-Cr nano-oxides as catalysts for methanol oxidation in NaOH solution. J. Nanosci. Nanotechnol. 15, 3743–3749 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (21603143 and 21505092) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingying Gu or Yarui An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Gu, Y., Li, P. et al. Promoting effect of Bi in Ni–Bi oxide electrocatalysts for methanol oxidation reaction. J Mater Sci: Mater Electron 31, 13219–13228 (2020). https://doi.org/10.1007/s10854-020-03873-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03873-y

Navigation