Skip to main content
Log in

Nickel-doped nanobelt structured molybdenum oxides as electrocatalysts for electrochemical hydrogen evolution reaction

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, nickel has been doped into α-MoO3 and the resulting Ni x Mo1 − x O3 nanostructured materials was examined as electrocatalysts for the cathodic hydrogen evolution reaction (HER). X-ray diffraction (XRD) analysis of the synthesized materials indicated that Ni go into the orthorhombic structure of α-MoO3 up to x = 0.2. Above x = 0.2, NiMoO4 (monoclinic) phase was formed along with the formation of trace quantities of MoO3. Nanobelt (NB) morphologies were observed for oxides with x ≤ 0.2 in transmission electron microscope (TEM) analysis and with the increase in the Ni concentration above 0.2, presence of broken belts along with few spherical particles were observed. The hydrogen evolving rates for various concentrations of Ni in MoO3 has been compared from the linear sweep voltammograms (LSVs) recorded at 500th cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991. doi:10.1021/cr0501994

    Article  Google Scholar 

  • McKone JR, Marinescu SC, Brunschwig BS, Winkler JR, Gray HB (2014) Earth-abundant hydrogen evolution electrocatalysts. Chem Sci 5:865–878. doi:10.1039/C3SC51711J

    Article  Google Scholar 

  • Phuruangrat A, Ham DJ, Thongtem S, Lee JS (2009) Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction. Electrochem Commun 11:1740–1743. doi:10.1016/j.elecom.2009.07.005

    Article  Google Scholar 

  • Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Core shell MoO3- MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett 11:4168–4175. doi:10.1021/nl2020476

    Article  Google Scholar 

  • Aruna KK, Manoharan R (2013) Electrochemical hydrogen evolution catalyzed by SrMoO4 spindle particles in acid water. Int J Hydrog Energy 38:12695–12703. doi:10.1016/j.ijhydene.2013.07.064

    Article  Google Scholar 

  • Liao L, Zhu J, Bia X, Zhu L, Scanlon MD, Girault HH, Liu B (2013) MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv Funct Mater 23:5326–5333. doi:10.1002/adfm.201300318

    Article  Google Scholar 

  • Voiry D, Yamaguchi H, Li J, Silva R, Alves DCB, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12:850–855. doi:10.1038/nmat3700

    Article  Google Scholar 

  • Han Y, Yue X, Jin Y, Huang X, Shen PK (2016) Hydrogen evolution reaction in acidic media on single-crystalline titanium nitride nanowires as an efficient non-noble metal electrocatalyst. J Mater Chem A 4:3673–3677. doi:10.1039/C5TA09976E

    Article  Google Scholar 

  • Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen- evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem Int Ed 51:6131–6135. doi:10.1002/anie.201200699

    Article  Google Scholar 

  • Wang X, Kolen'ko YV, Liu L (2015b) Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni2P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chem Commun 51(31):6738–6741. doi:10.1039/C5CC00370A

    Article  Google Scholar 

  • Wan C, Leonard BM (2015) Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chem of Mater 27:4281–4288. doi:10.1021/acs.chemmater.5b00621

    Article  Google Scholar 

  • Liao L, Wang S, Xiao J, Bian X, Zhang Y, Scanlon MD, Hu X, Tang Y, Liu B, Girault HH (2014) A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ Sci 7:387–392. doi:10.1039/C3EE42441C

    Article  Google Scholar 

  • Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270. doi:10.1021/ja403440e

    Article  Google Scholar 

  • Zhang Z, Lu B, Hao J, Yang W, Tang J (2014) FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chem Commun 50:11554–11557

    Article  Google Scholar 

  • Wang X, Kolen'ko YV, Bao X-Q, Kovnir K, Liu L (2015a) One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew Chem Int Ed 54(28):8188–8192. doi:10.1002/anie.201502577

    Article  Google Scholar 

  • Wang X, Li W, Xiong D, Liu L (2016a) Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. J Mater Chem A 4(15):5639–5646. doi:10.1039/C5TA10317G

    Article  Google Scholar 

  • Wang X, Li W, Xiong D, Petrovykh DY, Liu L (2016b) Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv Funct Mater 26(23):4067–4077. doi:10.1002/adfm.201505509

    Article  Google Scholar 

  • Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Du A, Jaroniec M, Qiao SZ (2014) Hydrogen evolution by a metal free electrocatalyst. Nat Commun 5:3783–3792. doi:10.1038/ncomms4783

    Google Scholar 

  • Zhang X, Han Y, Huang L, Dong S (2016) 3D graphene aerogels decorated with cobalt phosphide nanoparticles as Electrocatalysts for the hydrogen evolution reaction. ChemSusChem 9:3049–3053

    Article  Google Scholar 

  • Manoharan R, Goodenough JB (1990) Hydrogen evolution on Sr1-xNbO3-δ(0.7 ≤ x ≤ 0.95) in acid. J Electrochem Soc 137:910–913. doi:10.1149/1.2086577

    Article  Google Scholar 

  • Galal A, Nada NF, Darwish SA, Fatah AA, Ali SM (2010) Electrocatalytic evolution of hydrogen on a novel SrPdO3 perovskite electrode. J Power Source 195:3806–3809. doi:10.1016/j.jpowsour.2009.12.091

    Article  Google Scholar 

  • Zheng H, Mathe M (2011) Hydrogen evolution reaction on single crystal WO3/C nanoparticles supported on carbon in acid and alkaline solution. Int J Hydrog Energy 36:1960–1964. doi:10.1016/j.ijhydene.2010.11.052

    Article  Google Scholar 

  • Wang B, Yin GP, Lin YG (2007) Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell. J Power Sources 170:242–250. doi:10.1016/j.jpowsour.2007.03.078

    Article  Google Scholar 

  • Lu PJ, Lei M, Liu J (2014) Graphene nanosheets encapsulated α-MoO3 nanoribbons with ultrahigh lithium ion storage properties. Cryst Eng Comm 16:6745–6755. doi:10.1039/C4CE00252K

    Article  Google Scholar 

  • Zadeh KK, Tang J, Wang M, Wang KL, Shailos A, Galatsis K, Kojima R, Strong V, Lech A, Wlodarski W, Kaner RB (2010) Synthesis of nanometre-thick MoO3 sheets. Nano 2:429–433. doi:10.1039/B9NR00320G

    Google Scholar 

  • Xia T, Li Q, Liu X, Meng J, Cao X (2006) Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. J Phys Chem B 110:2006–2012. doi:10.1021/jp055945n

    Article  Google Scholar 

  • Troitskaia IB, Gavrilova TA, Gromilov SA, Sheglov DV, Atuchin VV, Vemuri RS, Ramana CV (2010) Growth and structural properties of α-MoO3 (0 1 0) microplates with atomically flat surface. Mater Sci Eng B 174:159–163. doi:10.1016/j.mseb.2010.05.016

    Article  Google Scholar 

  • Ghazal K, Masoud SN, Hamid E (2013) Sonochemical synthesis and characterization of NiMoO4 nanorods. Ultrason Sonochem 20:418–424. doi:10.1016/j.ultsonch.2012.08.012

    Article  Google Scholar 

  • Clark GM, Doyle WP (1966) Infra-red spectra of anhydrous molybdates and tungstates. Spectrochim Acta 22:1441–1447. doi:10.1016/0371-1951(66)80137-6

    Article  Google Scholar 

  • Atta NF, Galal A, Ali SM (2012) The catalytic activity of ruthenates ARuO3 (A = Ca, Sr and Ba) for the hydrogen evolution reaction in acidic medium. Int J Electrochem Soc 7:725–746. doi:10.1039/c2sc20539d

    Google Scholar 

  • Damian A, Omanovic S (2006) Ni and Ni-Mo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix. J Power Sources 158:464–476. doi:10.1016/j.jpowsour.2005.09.007

    Article  Google Scholar 

  • Zoltowski P (1998) On the electrical capacitance of interfaces exhibiting constant phase element behavior. J. Electoanal Chem 443:149–154. doi:10.1016/S0022-0728(97)00490-7

    Article  Google Scholar 

  • Jorcin JB, Orazen ME, Pebere N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electochim Acta 51:1473–1479. doi:10.1016/j.electacta.2005.02.128

    Article  Google Scholar 

  • Bockris JOM, Potter EC (1952) The mechanism of the cathodic hydrogen evolution reaction. J Electro Chem Soc 99:169–186. doi:10.1149/1.2779692

    Article  Google Scholar 

  • Southampton Electrochemistry Group (1985) Instrumental methods in electrochemistry. Wiley, New York

    Google Scholar 

  • Goodenough JB, Manoharan R, Paranthaman M (1990) Surface protonation and electrochemical activity of oxides in aqueous solution. J Am Chem Soc 112:2076–2082. doi:10.1021/ja00162a006

    Article  Google Scholar 

  • Manoharan R (1997) Electrochemical hydrogen evolution on solid oxides RuO2, Ru0.7Rh0.3O2 and IrO2 from acidic water. Proc Indian Acad Sci (Chem Sci) 109:1–6. doi:10.1007/BF02871354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoharan Ramasamy.

Ethics declarations

Funding

This work is partially supported by the Department of Science and Technology (DST) Nano Mission, Govt. of India (SR/NM/NS-1016/2010) and PSG & Son’s Charities.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalasapurayil Kunhiraman, A., Ramasamy, M. Nickel-doped nanobelt structured molybdenum oxides as electrocatalysts for electrochemical hydrogen evolution reaction. J Nanopart Res 19, 203 (2017). https://doi.org/10.1007/s11051-017-3890-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3890-y

Keywords

Navigation