Skip to main content
Log in

Influence of the growth temperature on the spectral dependence of the optical functions associated with thin silicon films grown by ultra-high-vacuum evaporation on optical quality fused quartz substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Following up on some recent work that has been presented (Orapunt et al., J Appl Phys 119:065702-1-12, 2016), we report on the optical properties associated with a unique form of thin-film silicon that has been deposited onto optical quality fused quartz substrates through ultra-high-vacuum evaporation. For the purposes of this particular analysis, we focus on how the growth temperature influences the spectral dependence of the optical functions associated with these thin silicon films, for growth temperatures ranging from 98 to 572 °C. Through measurements of the specular reflectance spectrum at near normal incidence and the regular transmittance spectrum at normal incidence, we determine the spectral dependence of the refractive index, the extinction coefficient, the real and imaginary parts of the dielectric function, and the optical absorption coefficient for the 11 thin silicon films considered in this analysis. We find that generally the refractive index increases in response to increases in the growth temperature. The optical absorption spectral dependence is also observed to exhibit a fundamental transition in its functional behavior accompanying increases in the growth temperature. Some details, related to recently developed methods employed for the determination of the optical functions from measurements of the reflectance and transmittance spectra, are provided as a complement to this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. By “lattice” we are referring to the manner in which the atoms are distributed throughout the material.

  2. The suitability of these thin silicon films for photovoltaic device applications has yet to be fully probed. While the electron spin resonance work of Akbari-Sharbaf et al. [38] and the carrier dynamic work of Titova et al. [39] has shown that similarly prepared thin films of silicon are promising for photovoltaic device applications, light soaking experiments, and other photovoltaic-specific analyzes, have yet to be pursued. These will have to be performed in the future if the photovoltaic potential of this material is to be realized.

  3. The apparently anomalous behavior observed in the reflectance spectra, where the measured reflectance of the thin silicon film coating is less than that associated with the bare optical quality fused quartz substrate, can be explained if the optical thickness of the thin-films at these particular wavelengths is such that destructive interference occurs. In this situation, the thin-film behaves like an anti-reflection coating, where the reflectance is diminished and the throughput (transmittance) is increased compared with the bare optical quality fused quartz substrate.

  4. There is evidence to suggest that there are inhomogeneities that occur in the optical properties as one goes deeper into a given thin-film, these inhomogeneities reflecting the structural inhomogeneities that are present. In effect, a given thin-film may be thought of as being comprised of a stack of thin-film layers, each layer within such a stack having its own optical properties. These differences become magnified the thicker the thin-film, the thin-films grown at 98 \(^{\circ }\)C exhibiting large differences in their thicknesses when contrasted with those grown at the other growth temperatures; recall Table 1.

  5. In contrast, for the case of PD-a-Si, O’Leary [55] demonstrated that there is a fundamental discontinuity in the optical absorption spectrum as the disorderless limit is approached.

References

  1. A. Terakawa, Sol. Energy Mater. Sol. Cells 119, 204–208 (2013)

    CAS  Google Scholar 

  2. H.W. van Zeijl, ECS Trans. 61, 191–206 (2014)

    Google Scholar 

  3. S. Wagner, MRS Bull. 43, 617–622 (2018)

    Google Scholar 

  4. M.H. Brodsky, R.S. Title, K. Weiser, G.D. Pettit, Phys. Rev. B 1, 2632–2641 (1970)

    Google Scholar 

  5. W.E. Spear, P.G. Le Comber, Solid State Commun. 17, 1193–1196 (1975)

    Google Scholar 

  6. M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556–3571 (1977)

    CAS  Google Scholar 

  7. E.C. Freeman, W. Paul, Phys. Rev. B 20, 716–728 (1979)

    CAS  Google Scholar 

  8. J. Kakalios, R.A. Street, W.B. Jackson, Phys. Rev. Lett. 59, 1037–1040 (1987)

    CAS  Google Scholar 

  9. R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  10. C. Weber, J.R. Abelson, IEEE Trans. Electron Devices 45, 447–452 (1998)

    CAS  Google Scholar 

  11. R.A. Street (ed.), Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000)

    Google Scholar 

  12. J. Deng, C.R. Wronski, J. Appl. Phys. 98, 024509-1-10 (2005)

    Google Scholar 

  13. C. Longeaud, F. Ventosinos, J.A. Schmidt, J. Appl. Phys. 112, 023709-1-10 (2012)

    Google Scholar 

  14. R. Grigorovici, A. Vancu, Thin Solid Films 2, 105–110 (1968)

    CAS  Google Scholar 

  15. D. Beaglehole, M. Zavetova, J. Non-Cryst. Solids 4, 272–278 (1970)

    CAS  Google Scholar 

  16. J.E. Fischer, T.M. Donovan, J. Non-Cryst. Solids 8–10, 202–208 (1972)

    Google Scholar 

  17. S.K. Bahl, S.M. Bhagat, J. Non-Cryst. Solids 17, 409–427 (1975)

    CAS  Google Scholar 

  18. G.K.M. Thutupalli, S.G. Tomlin, J. Phys. C 10, 467–477 (1977)

    CAS  Google Scholar 

  19. M.H. Brodsky, R.S. Title, Phys. Rev. Lett. 23, 581–585 (1969)

    CAS  Google Scholar 

  20. D.E. Carlson, C.R. Wronski, Appl. Phys. Lett. 28, 671–673 (1976)

    CAS  Google Scholar 

  21. P.G. Le Comber, W.E. Spear, A. Ghaith, Electron. Lett. 15, 179–181 (1979)

    Google Scholar 

  22. A.J. Snell, K.D. Mackenzie, W.E. Spear, P.G. LeComber, A.J. Hughes, Appl. Phys. 24, 357–362 (1981)

    CAS  Google Scholar 

  23. C.C. Tsai, J.C. Knights, R.A. Lujan, B. Wacker, B.L. Stafford, M.J. Thompson, J. Non-Cryst. Solids 59 & 60, 731–734 (1983)

    Google Scholar 

  24. C.R. Wronski, Sol. Energy Mater. Sol. Cells 41/42, 427–439 (1996)

    Google Scholar 

  25. Z. Remes̆, M. Vanĕc̆ek, P. Torres, U. Kroll, A.H. Mahan, R.S. Crandall, J. Non-Cryst. Solids 227—-230, 876–879 (1998)

    Google Scholar 

  26. F. Gaspari, L.S. Sidhu, S.K. O’Leary, S. Zukotynski, Mater. Res. Soc. Symp. Proc. 420, 375–380 (1996)

    CAS  Google Scholar 

  27. D.A. Papaconstantopoulos, E.N. Economou, Phys. Rev. B 24, 7233–7246 (1981)

    CAS  Google Scholar 

  28. D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, 292–294 (1977)

    CAS  Google Scholar 

  29. R. Biswas, B.C. Pan, Appl. Phys. Lett. 72, 371–373 (1998)

    CAS  Google Scholar 

  30. R. Biswas, Y.-P. Li, Phys. Rev. Lett. 82, 2512–2515 (1999)

    CAS  Google Scholar 

  31. B.J. Fogal, S.K. O’Leary, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Solid State Commun. 120, 429–434 (2001)

    CAS  Google Scholar 

  32. S.K. O’Leary, B.J. Fogal, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, J. Non-Cryst. Solids 290, 57–63 (2001)

    Google Scholar 

  33. D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, B.J. Fogal, S.K. O’Leary, Solid State Commun. 122, 271–275 (2002)

    CAS  Google Scholar 

  34. J.-M. Baribeau, X. Wu, D.J. Lockwood, L. Tay, G.I. Sproule, J. Vac. Sci. Technol. B 22, 1479–1483 (2004)

    CAS  Google Scholar 

  35. L. Tay, D.J. Lockwood, J.-M. Baribeau, X. Wu, G.I. Sproule, J. Vac. Sci. Technol. A 22, 943–947 (2004)

    CAS  Google Scholar 

  36. L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, F. Orapunt, S.K. O’Leary, Appl. Phys. Lett. 88, 121920-1-3 (2006)

    Google Scholar 

  37. F. Orapunt, L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, S.K. O’Leary, J. Appl. Phys. 119, 065702-1-12 (2016)

    Google Scholar 

  38. A. Akbari-Sharbaf, J.-M. Baribeau, X. Wu, D.J. Lockwood, G. Fanchini, Thin Solid Films 527, 38–44 (2013)

    CAS  Google Scholar 

  39. L.V. Titova, T.L. Cocker, S. Xu, J.-M. Baribeau, X. Wu, D.J. Lockwood, F.A. Hegmann, Semicond. Sci. Technol. 31, 105017-1-8 (2016)

    Google Scholar 

  40. K.J. Schmidt, Y. Lin, M. Beaudoin, G. Xia, S.K. O’Leary, G. Yue, B. Yan, Can. J. Phys. 92, 857–861 (2014)

    CAS  Google Scholar 

  41. R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, C.R. Wronski, Sol. Energy Mater. Sol. Cells 78, 143–180 (2003)

    CAS  Google Scholar 

  42. G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens, B. Brooks, Sol. Cells 2, 227–243 (1980)

    CAS  Google Scholar 

  43. O.S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955)

    Google Scholar 

  44. R.E. Denton, R.D. Campbell, S.G. Tomlin, J. Phys. D 5, 852–863 (1972)

    CAS  Google Scholar 

  45. S.G. Tomlin, J. Phys. D 1, 1667–1671 (1968)

    Google Scholar 

  46. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 749–763

    Google Scholar 

  47. C.B. Roxlo, B. Abeles, C.R. Wronski, G.D. Cody, T. Tiedje, Solid State Commun. 47, 985–987 (1983)

    CAS  Google Scholar 

  48. M.M. El-Nahass, H.S. Soliman, N.El. Kadry, A.Y. Morsy, S. Yaghmour, J. Mater. Sci. Lett. 7, 1050–1053 (1988)

    CAS  Google Scholar 

  49. R. Sridhar, R. Venkattasubbiah, J. Majhi, R. Ramachandran, J. Non-Cryst. Solids 119, 331–341 (1990)

    CAS  Google Scholar 

  50. J. Müllerová, L. Prus̆áková, M. Netrvalová, V. Vavrun̆ková, P. Šutta, Appl. Surf. Sci. 256, 5667–5671 (2010)

    Google Scholar 

  51. A.R. Forouhi, I. Bloomer, Phys. Rev. B 34, 7018–7026 (1986)

    CAS  Google Scholar 

  52. R.H. Klazes, M.H.L.M. van den Broek, J. Bezemer, S. Radelaar, Philos. Mag. B 45, 377–383 (1982)

    CAS  Google Scholar 

  53. S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, Chichester, 2005)

    Google Scholar 

  54. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480–1483 (1981)

    CAS  Google Scholar 

  55. S.K. O’Leary, Appl. Phys. Lett. 72, 1332–1334 (1998)

    Google Scholar 

Download references

Acknowledgements

Three of the authors (S.M., F.O., and S.K.O.) wish to thank the Natural Sciences and Engineering Research Council of Canada and MITACS for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. O’Leary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, S., Orapunt, F., Noël, M. et al. Influence of the growth temperature on the spectral dependence of the optical functions associated with thin silicon films grown by ultra-high-vacuum evaporation on optical quality fused quartz substrates. J Mater Sci: Mater Electron 31, 13186–13198 (2020). https://doi.org/10.1007/s10854-020-03870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03870-1

Navigation